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How does the brain allow us to acquire new skills and maintain mas-
tered skills in response to changes in the external environment and 
our motor systems? There are many reasons to believe that it does 
this by computing a sensory prediction error signal that represents 
the difference between the expected and actual sensory consequences 
of a given motor command. First, the intrinsic delays of sensory feed-
back make it impossible for sensory signals alone to account for many 
aspects of motor learning1–5. Second, theoretical investigations have 
demonstrated that the computation of sensory prediction errors is 
essential for fine-tuning motor behavior, including its on-line control 
and motor adaptation6,7. Third, behavioral studies in humans sug-
gest that errors induced by external perturbations are interpreted as 
sensory prediction errors8,9.

The cerebellum, a structure that is well-conserved across verte-
brates, has a vital role in motor learning. Numerous studies have 
focused on understanding the information represented by the  
activity of cerebellar Purkinje cells, whose axons encode the output of 
the cerebellar cortex, during motor learning (reviewed in refs. 10,11). 
Although progress has been limited by the inherent challenge of sys-
tematically dissociating motor commands and movement kinematics, 
recent experiments have shown that Purkinje cells encode signals 
consistent with a forward model (that is, the predicted sensory conse-
quence of movement) rather than actual movement12,13. Theoretically, 
sensory prediction errors will occur if there is a mismatch between 
the sensory expectation computed by the cerebellum’s forward model 
and actual sensory feedback (Fig. 1a). This error signal has been 
hypothesized to fine-tune the cerebellum’s forward model, as well as 
the consequent motor command, to ensure accurate motor learning 
(reviewed in refs. 14,15). Although the finding that cerebellar patients 
exhibit deficits in the predictive control of movement16–18 is consistent  
with this proposal, the existence of an explicit neural representation 
of such an error signal has not yet been demonstrated.

Thus, to date, the question of where and how the brain compares 
expected and actual sensory feedback during the process of motor 
learning remains open. One recent line of work reported that Purkinje 
cells encode both predictive signals and actual sensory feedback  
during manual tracking13,19. However, this work stopped short of 
linking neuronal activities to sensory prediction errors, as the predic-
tive and feedback representations in individual Purkinje cells were 
separated by several hundred milliseconds. Accordingly, we examined 
whether there might be evidence for the comparison between pre-
dictive and feedback signals required for the computation of sensory 
prediction errors downstream of Purkinje cells at the level of the deep 
cerebellar nuclei.

We took advantage of a relatively simple sensory-motor pathway 
with a well-described organization to gain new insight into the com-
putations performed by the cerebellum to drive motor learning as 
well as its extinction. The most medial of the deep cerebellar nuclei 
(rostral fastigial nucleus, rFN) constitutes a major output target of the 
cerebellar cortex20, and this nucleus in turn sends strong projections 
to the vestibular nuclei (VN), reticular formation and spinal cord20–23 
for postural control. While monkeys made voluntary head move-
ments, we unexpectedly applied a load to the head and recorded from 
single neurons in this deep cerebellar nucleus. We found that neurons  
displayed responses consistent with the initial introduction of a sen-
sory prediction error as well as its subsequent decline throughout 
motor learning. We further observed corresponding parallel changes 
in the responses of neurons downstream in the VN, thereby directly 
linking observed changes in cerebellar output to sensory-motor  
adaptation during voluntary head motion.

RESULTS
To study the neural basis of motor learning during voluntary head 
movements, we recorded from single neurons (n = 41) in the rFN 
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Learning to expect the unexpected: rapid updating in 
primate cerebellum during voluntary self-motion
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There is considerable evidence that the cerebellum has a vital role in motor learning by constructing an estimate of the sensory 
consequences of movement. Theory suggests that this estimate is compared with the actual feedback to compute the sensory 
prediction error. However, direct proof for the existence of this comparison is lacking. We carried out a trial-by-trial analysis of cerebellar 
neurons during the execution and adaptation of voluntary head movements and found that neuronal sensitivities dynamically tracked 
the comparison of predictive and feedback signals. When the relationship between the motor command and resultant movement was 
altered, neurons robustly responded to sensory input as if the movement was externally generated. Neuronal sensitivities then declined 
with the same time course as the concurrent behavioral learning. These findings demonstrate the output of an elegant computation in 
which rapid updating of an internal model enables the motor system to learn to expect unexpected sensory inputs.
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and quantified their sensitivity to passively applied stimulation of 
the vestibular system and neck proprioceptors24. Because we focused 
on head movement motor learning, we targeted our analyses on the 
responses of unimodal rFN neurons (hereafter referred to simply 
as rFN neurons, n = 21), as these neurons respond to head motion. 
Bimodal rFN neurons instead responded to body motion, consistent  
with previous results24 (Supplementary Figs. 1–5). Recordings  
were also made from neurons in the VN that responded to passive 
vestibular stimulation, but were insensitive to eye movements as  
well as passive neck stimulation, consistent with previous characteri-
zations of VN vestibular-only neurons25.

Deep cerebellar nuclei during learning: evidence for 
computation of sensory prediction error
In a typical learning experiment, the monkey first made active head 
movements between two targets located 50 degrees apart. Then, after 
at least 20 of these control movements, we introduced a load to the 
head by applying resistive torque (Fig. 1b) proportional to head veloc-
ity adjusted to produce an initial reduction in peak head velocity of 
about 50%. The monkey then made >60 learning trials under the new 
biomechanical constraints imposed by this new load (that is, learn-
ing phase; Fig. 1c). After 50 learning trials, occasional ‘catch trials’ 
(Fig. 1c) were introduced to assess neuronal responses when the load 
was unexpectedly removed for a single trial. Finally, the load was 
permanently removed and the monkey continued to make orienting 
movements during the learning extinction phase (Fig. 1c).

In conditions that do not involve motor learning, rFN neurons 
encode passively generated, but not self-produced (that is, active), 
vestibular sensory signals26. The responses of a typical neuron before 
learning are shown in Figure 2a. Consistent with previous work26, 
the marked difference in the modulation of this representative neuron 
during passive (0.43 ± 0.04 spikes per s/° per s) and active (0.05 ± 0.04 
spikes per s/° per s) head motion was typical of our population (Fig. 2a).  
Overall, the sensitivity of rFN neurons was significantly reduced (~70%) 
during active motion (0.10 ± 0.01 versus 0.35 ± 0.03 spikes per s/° per s;  
Wilcoxon test, P = 4.2517 × 10−7). Thus, these neurons preferentially 
responded to exafferent (externally generated) as compared with 
reafferent (self-generated) sensory effects of self-motion, consistent  

with the coding of unexpected sensory input. If rFN neuronal  
responses are updated in a manner consistent with the computation  
of sensory prediction error signals, we hypothesized that they 
should robustly encode reafferent sensory input when the relation-
ship between motor commands and resulting head motion is altered,  
but their sensitivity should then decrease with learning. Specifically, 
neurons should show an increased sensitivity to head motion when the 
load is initially applied and show markedly decreased head-velocity  
sensitivity once adaptation occurs, consistent with the brain’s  
updating of the predicted sensory consequence of movement.

To test these hypotheses, we analyzed changes in the trial-by-trial 
motor behavior and neuronal responses during the learning phase of 
our procedure (Fig. 2a). Peak head velocity was initially reduced by 
approximately 50% (64 ± 4 versus 173 ± 12° per s) and then progres-
sively increased, reaching values that were not significantly differ-
ent from those of control movements (161 ± 8° per s for the 46st to 
50th movements versus 173 ± 12° per s, respectively; Wilcoxon test,  
P = 0.082). Thus, the monkey successfully modified its head motor 
command to account for the new relationship between motor  
command and movement. Notably, when the torque was initially 
applied, an example rFN neuron robustly responded to active motion 
(Fig. 2a). Indeed, the neuron’s sensitivity to vestibular stimulation 
resulting from passive head motion provided an excellent predic-
tion of its response to active head motion during the early phases of 
learning, but this prediction increasingly overestimated the neuron’s 
response for head movements made in the middle and later phases 
of learning (Fig. 2a). Notably, the neuron’s head-velocity sensitivity 
progressively decreased such that it was nearly negligible once the 
monkey had adapted to the new load, by about trial 50; as the magni-
tude of the difference between expected and actual sensory input (that 
is, head velocity error) approached zero, neuronal sensitivity progres-
sively decreased (Fig. 2b,c). Thus, consistent with our prediction, the 
example rFN neuron responded robustly to reafferent sensory input 
when the relationship between motor command and movement was 
initially altered, followed by a markedly decreased modulation once 
motor adaptation had occurred.

To establish that the brain’s internal model had been updated  
to account for the imposed perturbation, we next introduced catch  
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Figure 1 Experimental design. (a) Schematic showing the prevailing model of the proposed circuit for motor learning in which the cerebellum computes 
an estimate of the expected sensory consequence of the brain’s motor command (that is, forward model). This estimate is then compared with the actual 
sensory feedback to compute the sensory prediction error. Single-unit recordings were made in the rFN, which constitutes a major output target of the 
cerebellar cortex, as well as VN, which project to the spinal cord. (b) Experimental set-up for learning procedure in which resistive torque was applied 
to reduce head motion initially by half. (c) Sequence of learning task. First, head movements and neuronal responses (not shown) were recorded before 
learning in both passive and active conditions. Second, the load was applied and held constant for the learning phase. Third, after the learning phase, 
the motor was randomly turned off for single catch trials. Finally, the motor was completely turned off for the extinction phase.
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trials27–30 by unexpectedly removing the applied load. Indeed, because 
the head motor system had incorporated the applied resistive load 
into its motor plan, monkeys made substantially faster head move-
ments when the load was unexpectedly removed (281 ± 11° per s;  
Fig. 2a). Moreover, neurons again showed robust responses to reaf-
ferent sensory input when the load was removed. Indeed, the example 
neuron was typical in that its response to vestibular stimulation result-
ing from passive head motion again provided an excellent prediction 
of its response to active head motion during catch trials (Fig. 2a), 
indicating the vestibular sensitivity was comparable to that observed 
for passive rotations (Wilcoxon test, P > 0.05; Fig. 2b). Thus, fol-
lowing the introduction of a large sensory prediction error by either 
application of the load to induce learning or removal of the load dur-
ing catch trials, neurons initially responded with the same sensitivity 
as during passive motion, regardless of the error’s sign (that is, less 
versus more head velocity than expected, respectively). For complete-
ness, a comparable analysis was also carried out on bimodal neurons 
(Supplementary Fig. 1), confirming the expected lack of response 
before, during and after learning, as these neurons respond to body 
rather than head motion24.

The observations shown in Figure 2 were representative and  
are summarized in Figure 3a,b for our population. Consistent with 
our experimental design, passively applied head velocities were  
comparable to active head movements made before the induction 
of learning (165 ± 10 versus 180 ± 20° per s, respectively; Wilcoxon  
test, P = 0.0937; Fig. 3a). Moreover, similar to the behavior recorded 

Figure 2 Learning procedure. (a) Activity of an rFN example neuron during 
the learning phase and catch trials. The top row shows the head velocity 
during control trials, learning phase and catch trials overlaying five trials. 
The second row shows the firing rates corresponding to the head movements 
above. Gray lines show individual trials and black lines show the average. The 
red dashed lines superimposed on the firing rates are a prediction based on 
the neuron’s sensitivity to passive whole-body rotation. (b) Head velocity error 
magnitude during learning and catch trials (n = 5 for each condition). When 
the load was applied, the monkey initially made slower head movements, 
as quantified by a significant head velocity error. As learning progressed, 
head velocity increased, nearing control values, as indicated by the marked 
decrease in head velocity error magnitude (light blue bars). (c) Normalized 
sensitivity to the corresponding head movements (n = 5 for each condition) 
shown above. During the learning phase, the neuronal sensitivity gradually 
decreased from that measured during passive head motion to the suppressed 
response observed during active motion (light blue bar). Neuronal sensitivity 
during catch trials (red) was comparable to the neuronal sensitivity during 
early learning and passive head movements. Error bars represent ±s.e.m. 

simultaneously from the example neuron (Fig. 2), the peak head veloc-
ity of active head movements dropped by ~50% when the load was first 
applied to the head, steadily increased returning to control values after 
~50 movements and nearly doubled for catch trials (Fig. 3a). Notably, 
these changes in head movement were consistently linked to changes 
in neuronal responses across our population of neurons (Fig. 3b). 
Neuronal responses to active movements were minimal before learn-
ing, but were robust immediately after the onset of learning and were 
in fact characterized by sensitivities comparable to those estimated 
for passive motion (0.28 ± 0.04 versus 0.35 ± 0.03 spikes per s/° per s;  
Wilcoxon test, P = 0.3327). As learning progressed, neurons displayed 
increasingly reduced vestibular sensitivities that returned to control 
values for active motion within 50 trials (0.09 ± 0.01 spikes per s/° 
per s; Wilcoxon test, P = 0.9599). In addition, comparison of neuro-
nal responses during catch trials revealed sensitivities comparable  
to those measured during passively applied motion (0.33 ± 0.05  
spikes per s/° per s; Wilcoxon test, P = 0.8307; Fig. 3b). As expected, a 
comparable analysis of our population of bimodal rFN neurons, which 
encode body rather than head motion, did not show any changes in 
response sensitivity during head movement learning (Supplementary 
Fig. 2). Thus, taken together, these results suggest a tight linkage 
between the learning of new relationships between motor commands 
and actual head movements and changes in the response sensitivity 
of neurons in the deep cerebellum that is consistent with the coding 
of unexpected sensory input.

Dynamics of the time course of adaptation
Previous studies of motor learning have shown that adaptation can occur 
within ten repetitions of a task (for example, compensation for coriolis 
forces when reaching in a rotating environment28,31) or require much 
more prolonged exposure (for example, reaching while forces depend-
ent on the motion state of the hand are applied32). To determine the time 
course of behavioral learning and corresponding changes in neuronal 
activity in our motor learning task, we next performed a trial-by-trial 
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Figure 3 Average head velocity and sensitivity for our population of  
rFN neurons (n = 21) during the learning phase. (a) Normalized head 
velocity for control trials before learning, learning phase and catch trials. 
(b) Normalized neuronal sensitivity for control trials, the learning phase 
and catch trials. Data show average and error bars represent ±s.e.m. in  
all panels. (c) Scatter plot of peak head velocity errors over time for  
each trial during the learning phase. (d) Scatter plot of normalized 
neuronal sensitivity over time for each trial during the learning phase. 
Black lines show exponential fits to the data.
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analysis of each single neuron’s response (Supplementary Fig. 3a,b).  
We quantified the time course of the change in peak head velocity 
and compared it to that of the accompanying decrease in neuronal 
sensitivity by fitting both data sets with exponential curves (Online 
Methods). We examined the average normalized change in velocity 
(Online Methods and Fig. 3c) and normalized neuronal sensitivities 
for each trial in the learning phase (Fig. 3d) across our population of 
rFN neurons. Over our population, the average time constant of the 
increase in peak velocity toward control values was markedly similar 
to the average time constant for the coincident decrease in neuronal 
sensitivity (34 ± 7 versus 24 ± 8 trials, respectively; Wilcoxon test,  
P = 0.3944). Thus, our results demonstrate that the decreased neuronal 
sensitivity of deep cerebellar nuclei neurons tracks the detailed time 
course of behavioral changes as learning progresses.

Neuronal responses during extinction
We next addressed whether rFN neuronal responses are also updated 
in a manner consistent with the computation of sensory prediction 
error signals when the relationship between motor command and 
movement was altered after learning had occurred and the load was 
permanently removed (that is, during the extinction phase of learn-
ing; Fig. 4a). We found that head movements were initially (that 
is, the first five movements made in the extinction phase) larger 
than control head movements (274 ± 11° per s versus 173 ± 12°  
per s, Wilcoxon test, P = 9.9632 × 10−13) as would be expected since  
these trials were effectively equivalent to catch trials (catch trials;  
Fig. 4b). When the monkey then continued to make active movements 
without the load, peak head velocity returned to normal (extinction;  
Fig. 4b). Furthermore, we found that rFN neuron responses  
mirrored the extinction of this learned behavior. Figure 4b illustrates 
the responses of the same example neuron shown in Figure 2 during 
learning extinction (Fig. 4b–d). In the early phases of extinction, 
the example neuron’s response gain was comparable to its sensitivity 
to passive stimulation (0.34 ± 0.08 versus 0.43 ± 0.04 spikes per s/°  
per s, respectively; Fig. 4d). In contrast, in the late stages of extinction,  
its response gain was substantially reduced and comparable to its 
sensitivity to active rotations made before learning (0.05 ± 0.05 versus  
0.05 ± 0.04 spikes per s/° per s, respectively; Fig. 4d). Thus, these  
findings are consistent with the idea that rFN neuronal sensitivity 
dynamically tracks the comparison of expected and actual head move-
ment; response gain was initially comparable to that observed for 
passive motion and then rapidly decreased to levels observed during 
actively generated head movements in a manner that closely paralleled 
the reduction in head velocity error (Fig. 4c,d).

The observations shown in Figure 4 were representative and are 
summarized in Figure 5a,b for our population. When the torque was 

initially removed, peak head velocity increased (early extinction), 
but then steadily decreased until it reached near control values (late 
extinction; Fig. 5a). As expected, the peak head velocities observed 
during the first few movements after the torque had been removed 
(that is, early extinction) and catch trials were not significantly differ-
ent (274 ± 19° per s versus 281 ± 18° per s; Wilcoxon test, P = 0.1464). 
Notably, changes in neuronal sensitivity mirrored these behavioral 
changes. Initially, the vestibular sensitivities of rFN neurons were 
comparable to those measured in response to passively applied motion 
(0.35 ± 0.04 spikes per s/° per s, early extinction; Wilcoxon test,  
P = 0.8111; Fig. 5b). Then, once the learned behavior was extin-
guished (that is, the peak velocity of head movement returned to 
control values), response sensitivities were markedly reduced and, 
in fact, comparable to those measured for active movements in the 
control condition (0.05 ± 0.01 spikes per s/° per s, late extinction; 
Wilcoxon test, P = 0.0509; Fig. 5b).

The extinction of learning is typically faster than the initial learn-
ing (reviewed in ref. 33). We quantified the time course of extinc-
tion and the corresponding changes in rFN neuronal activity to see 
whether this was the case for head-control motor learning. We again 
performed a trial-by-trial analysis of each single neuron’s response 
and compared it to the time course of the change in peak head veloc-
ity (Supplementary Fig. 3c,d). Figure 5c,d illustrates the average 
normalized change in velocity (Online Methods) and normalized 
neuronal sensitivities for each trial in the extinction phase across 
our population of rFN neurons. To facilitate comparison with the time 
course of learning (Fig. 3c,d), we fit both data sets with exponential 
curves (Online Methods). Over our population of rFN neurons, the 
average time constant of the decrease in peak velocity toward control 
values was comparable to the average time constant for the coincident 
decrease in neuronal sensitivity (21 ± 8 versus 16 ± 7 trials, respec-
tively; Wilcoxon test, P = 0.9861). Furthermore, comparisons with 
the time course of behavioral and neuronal changes in the learning 
phase revealed that both were indeed significantly shorter (~30%) 
for extinction (paired Wilcoxon tests; behavior, P = 0.004; neuronal, 
P = 0.0421). For completeness, comparable testing and analyses were 
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carried out on bimodal neurons (Supplementary Figs. 4 and 5) that 
confirmed the expected lack of response throughout the entire time 
course of extinction. In summary, our trial-by-trial analysis revealed 
that the time course of the extinction of learning is linked to changes 
in the responses of rFN neurons in the deep cerebellar nuclei, provid-
ing evidence that the output of the cerebellum signals the mismatch 
between the expected and actual sensory consequences of head move-
ment during the extinction as well as acquisition of learning.

Vestibular nuclei neurons mirror rFN neurons during motor learning
The deep cerebellar nuclei neurons of the rFN serve a vital role in 
regulating vestibulo-spinal reflexes to ensure accurate postural 
control. Given that the VN receive direct input from the rFN20–23, 
we hypothesized that the modulation of VN neurons that mediate  
vestibulo-spinal pathways would similarly reflect the updating of the 
forward model predicting the sensory consequences of head motion, 
thereby encoding a continuously updated representation of unex-
pected motion that could be used to maintain postural stability. To 
directly test this hypothesis, we examined whether the time course of 
changes in the head-velocity sensitivity of VN neurons was linked on a 
trial-by-trial basis to the learning and extinction of new relationships 
between active motion and vestibular reafference. Before learning, VN 
neurons showed robust modulation for passive motion; however, their 
sensitivities were greatly reduced when motion was self-generated  
(N = 20, 0.46 ± 0.01 versus 0.13 ± 0.03 spikes per s/° per s), as has been 
previously reported25,34.

Figure 6 illustrates the responses of a typical VN neuron before 
learning, during learning and catch trials, and during the extinction 
of learning. Consistent with our hypothesis, the trial-by-trial modula-
tion of VN neurons similarly represented the updating of the internal 
model predicting the sensory consequences of head motion. Figure 7  

illustrates the comparison of the population response during the 
learning and extinction phases of learning. Neuronal sensitivities 
increased following the application of the load and then decreased 
during learning. Specifically, in the early stages of learning, sensi-
tivities to vestibular stimulation produced by active motion were 
comparable to those produced by passive motion (0.46 ± 0.05 versus  
0.46 ± 0.01 spikes per s/° per s; Wilcoxon test, P = 0.8181) and, by the 
late phase of learning, sensitivities to active motion were again sup-
pressed to control levels (0.13 ± 0.04 spikes per s/° per s; Wilcoxon test,  
P = 0.9461). During catch trials, vestibular sensitivities were again 
comparable to those measured during passively applied motion  
(0.48 ± 0.06 spikes per s/° per s; Wilcoxon test, P = 0.8392). Notably, 
as seen for rFN neurons, VN neuronal sensitivity progressively 
decreased as the magnitude of the difference between expected 
and actual sensory input (that is, head velocity error) approached 
zero (Fig. 7b,c). Moreover, neuronal responses decayed with a time 
constant equivalent to that observed for rFN neurons (32 ± 7 versus  
24 ± 8 trials; Wilcoxon test, P = 0.3944). Thus, neurons in the VN, like 
those in the deep cerebellar nuclei, demonstrate rapid updating as the 
motor system learns to expect unexpected vestibular input.

In addition, there was a marked and immediate increase in neuro-
nal sensitivity at the onset of the learning extinction. Neuronal sen-
sitivities then decreased to control levels with the same time course 
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error over time for each trial during the extinction phase. (d) Scatter plot 
of normalized neuronal sensitivity over time for each trial during  
the extinction phase. Black lines show exponential fits to the data.  
Dashed lines are the average values for the catch trials.
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as the extinction of the learned behavior  
(Fig. 7d). Initially, neuronal sensitivities 
to active movements were comparable to 
those measured for passive motion (0.39 ± 0.09 spikes per s/° per s;  
Wilcoxon test, P = 0.3234), but, by the late phase of extinction,  
vestibular sensitivities were suppressed to control levels (0.05 ± 0.02  
spikes per s/° per s; Wilcoxon test, P = 0.1670). Our trial-by- 
trial–based analysis (Supplementary Fig. 6) further established 
that neuronal sensitivities progressively decreased during extinction  
as the magnitude of the difference between expected and actual  
sensory input (that is, head velocity error) approached zero (Fig. 7e,f). 
The time constant of this decrease was equivalent to that observed 
above for rFN neurons during the extinction of learning (VN, 16 ± 7; 
rFN, 13 ± 8). Thus, in the extinction phase, following the introduction 
of a large sensory prediction error by removal of the load, neurons 
again initially responded with the same sensitivity as during passive 
motion. Moreover, as was the case for rFN neurons, VN neuronal 
sensitivities increased to robustly encode sensory reafference when 
a sensory prediction error was introduced regardless of direction  
of the error (that is, during learning initiation as well as during  
catch trials and extinction initiation). Taken together, our findings 
indicate that the sensory responses of individual neurons in the VN, 
similar to those in the deep cerebellar nuclei, reflect the dynamic 
computation of sensory prediction error as motor learning (and 
unlearning) progresses.

DISCUSSION
Our central finding is that rapid updating in the primate cerebellum, 
consistent with the dynamic comparison between expected and actual 
sensory feedback, enabled the motor system to learn to expect unex-
pected sensory input. Specifically, our results provide direct evidence 
that the sensitivity of individual cerebellar output neurons tracks the 
difference between predictive and feedback signals, consistent with 
the computation of sensory prediction error during motor learning. 
This conclusion is based on the trial-to-trial evaluation of neuronal 
responses and behavior before, during and after learning.

By applying a constant load while monkeys generated voluntary 
head movements, we were able to systematically alter the relationship 
between the motor command to move the head and its actual motion. 
Notably, analysis of trial-by-trial changes in neuronal responses 
revealed the rapid, but gradual (that is, not a switch-like transition), 
updating of an internal model, consistent with the resultant behavioral  
learning. Furthermore, as predicted, neurons again immediately 
showed increased vestibular sensitivity with the introduction of a 

new challenging sensory prediction error when the load was removed 
in catch trials, and neuronal response gain during learning extinc-
tion declined with the same time course as that of the behavior. To 
the best of our knowledge, these findings reveal for the first time the 
output of an elegant computation by which the cerebellum compares  
expected and unexpected sensory inputs to fine-tune behavior  
during motor learning.

Evidence for the updating of a forward model predicting the 
sensory consequences of voluntary motion
The computation of sensory prediction errors has emerged as 
an important theoretical concept in motor control (reviewed in  
refs. 14,15). In this context, the cerebellum has been proposed as a 
likely candidate site for a forward model that predicts the expected 
sensory consequences of self-generated action. Changes in motor 
apparatus and/or environment will cause a mismatch between the 
cerebellum’s prediction and the actual resulting sensory stimulation. 
This mismatch is the sensory prediction error, which is thought to 
update both the forward model and motor program during motor 
learning to ensure that sensory-motor pathways remain calibrated. 
A major contribution of our study is that our results provide answers 
to the fundamental question of whether the brain actually compares 
predictive and feedback sensory signals during motor learning, and, 
if so, whether there is evidence for this computation at the level of the 
output neurons of the cerebellum.

Behavioral and lesion studies have provided clear evidence that 
the cerebellum has a fundamental role in motor learning. Notably, 
patients with cerebellar pathologies display impaired performance 
during sensory-motor adaptation tasks, characterized by persist-
ent error and attenuated after-effects18,35–37. Targeted lesions of the 
cerebellum in primates similarly impair adaptation of voluntary 
eye movements and the vestibulo-ocular reflex38,39. Motor adapta-
tion studies in humans have further suggested that learning requires 
updating of forward models, and that the errors produced by external 
perturbations are interpreted as sensory prediction errors rather than 
target errors8,9. Indeed, when high-quality sensory feedback is avail-
able, adaptation of motor commands appears to be almost exclusively 
driven by sensory prediction errors40. The cerebellum is required for 
this computation, as patients show selective deficits in sensory-motor 
learning, consistent with a cerebellar-dependent adaptation process 
based on minimizing such errors17.
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in the VN (n = 20). (a) Normalized neuronal 
sensitivity for control trials before learning and 
during learning phase and catch trials. (b) Scatter 
plots of head velocity error magnitude for each 
trial during learning. (c) Scatter plot of normalized 
neuronal sensitivity over time for each trial 
during learning phase. (d) Normalized neuronal 
sensitivity for control trials before learning, catch 
trials and extinction phase. (e) Scatter plots of 
head velocity error magnitude for each trial during 
learning the extinction of learning. (f) Scatter  
plot of normalized neuronal sensitivity over time 
for each trial during the extinction phase.  
The dashed lines denote the average value  
for the catch trials (e,f). Data show average and  
error bars represent ±s.e.m. in all panels. 
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By assessing trial-by-trial changes in firing rate, we found that 
the sensory sensitivities of neurons in the deep cerebellar nuclei 
were dynamically modulated on the basis of the difference between 
predictive and feedback signals consistent with the computation 
of sensory prediction error during motor learning. Prior single-
unit recording studies have shown that these same neurons robustly 
encode vestibular sensory inputs during unexpected applied 
motion24,41,42, but are not sensitive to the same vestibular sensory 
input when it is the result of self-generated motion26. We found 
that, in conditions that require motor learning, neuronal responses 
are correspondingly consistent with the trial-by-trial updating of a 
forward model, which minimizes the mismatch between expected 
and actual sensory input with the same temporal dynamics observed 
in the fine-tuning of motor commands required by the learning 
process. Thus, during motor learning, the responses of neurons 
in the deep cerebellar nuclei, which constitute a major output of 
the cerebellar cortex, suggest that the dynamic computation of a 
sensory prediction error signal underlies the brain’s ability to both 
distinguish between expected and unexpected sensory inputs and 
learn new expected consequences of self-motion when unexpected 
sensory input becomes expected.

Neuronal computations that drive motor learning
Although it is generally agreed that the cerebellar cortex is required 
for initially driving motor learning and then ensuring that move-
ments remain accurately calibrated over time (reviewed in refs. 14,43), 
its precise contribution remains controversial10,11. Nevertheless, the 
recent demonstration that cerebellar Purkinje cells encode the pre-
dicted consequence of movement rather than actual movement12,44 
provides strong support for the idea that the cerebellar cortex acts 
as a forward model. If motor learning is driven by the error signal 
computed by comparing this forward model’s prediction of sensory 
feedback with the actual sensory feedback, then it follows that there 
should be evidence for such a computation. Notably, the computa-
tion of sensory prediction error theoretically requires that these two 
sensory-related signals be aligned in time as well as within the same 
neuronal location4. Accordingly, if these two representations are tem-
porally offset in individual Purkinje cells, as recently suggested13,19, 
then it follows that sensory prediction error is likely computed down-
stream of the Purkinje cells. This then raises the question of where 
and how does this computation occur?

We think our experimental findings provide new insight into this 
question by establishing that, during motor learning, neurons at the 
next stage of cerebellar processing (that is, in the deep cerebellar 
nuclei) robustly encode sensory reafference following the introduction 
of a sensory prediction error, such that they respond as if the stimuli 
were externally generated. Specifically, when the motor requirements 
changed, as was the case when we applied resistive torque to the head 
during voluntary movements (that is, learning) or removed it fol-
lowing learning (that is, extinction), there was initially a mismatch 
between the brain’s prediction of the sensory consequences of the 
voluntary head motion and actual sensory feedback. Trial-by-trial 
analysis of rFN neuronal responses further revealed that the dynamic 
computation of sensory prediction error rapidly updated neuronal 
responses as the motor system learned to expect unexpected sensory 
input, suggesting successful temporal alignment between an internal 
estimate of the sensory consequences of self-generated head motion 
(that is, forward model) and its actual sensory feedback. Notably, 
neuronal responses were characterized by a decrease in sensitivity 
(that is, response gain), as the difference between expected and actual 

sensory input was minimized during both learning and extinction. 
Thus, although neuronal responses provide evidence for the dynamic 
computation of sensory prediction error, they do not explicitly encode 
the difference between expected and actual sensory input. Further 
studies of how rFN neurons integrate convergent input from cerebel-
lar regions such as the anterior vermis45 will be required to address 
this question.

Implications for the maintenance of accurate postural control
Our results have direct implications for behavior, as neurons in the 
fastigial deep cerebellar nucleus send descending projections to VN 
neurons that mediate vestibulo-spinal reflexes46. Given that these 
reflexes are essential for maintaining posture and balance, our abil-
ity to adapt their descending commands in the face of changes to 
either the motor apparatus or external environment is crucial. This is 
true for both continuous changes in the motor system (for example, 
changes in muscle fatigability, muscle fiber composition) and more 
abrupt changes in the external world. Indeed, our trial-by-trial analy-
sis of learning-induced modulation of response sensitivity revealed 
the same temporal characteristics for neurons in the deep cerebellar 
and VN. These changes in neuronal activity occurred in a continuous, 
but rapid, manner with approximately the same time constant as the 
adaptive change in behavior, and, consistent with previous studies, 
the extinction of learning occurred faster than the initial learning 
itself (reviewed in ref. 32).

We posit that rapid updating observed at the level of single  
cerebellar output neurons is essential for ensuring stable perception 
and accurate motor control during our everyday activities. Both 
depend strongly on the integration of vestibular, proprioceptive and 
motor-related signals and are substantially disrupted in cerebel-
lar patients47. The rFN receives descending projections from the  
anterior vermis of the cerebellum20, and it in turn projects to  
vestibular neurons, reticular formation and spinal cord20–23. 
Following the introduction of a large sensory prediction error (for 
example, if we slip on ice) reflex pathways that mediate postural 
reflexes are robustly activated to maintain balance. In contrast, 
during volitional movement, the same pathways are markedly sup-
pressed at the level of both the rFN and VN26,34. Hypothetically, 
this suppression is functionally advantageous, as an intact reflex 
would be counterproductive to the intended movement. Indeed, our 
results show that, as unexpected sensory input becomes expected, 
the mechanism underlying the suppression of sensory reafference 
is rapidly and accurately updated to re-enable this vital distinction 
between self-generated and applied stimulation.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Two adult male rhesus monkeys (Macaca mulatta) were prepared for chronic 
extracellular recording using aseptic surgical techniques. Monkeys were housed 
in pairs and kept on a 12-h dark/light cycle. All experimental protocols were 
approved by the McGill University Animal Care Committee and were in compli-
ance with the guidelines of the Canadian Council on Animal Care.

Surgical procedures. Surgical techniques were similar to those previously 
described24. Briefly, under aseptic conditions and surgical levels of isoflurane an 
18-mm diameter eye coil (three loops of Teflon-coated stainless steel wire) was 
attached to the sclera beneath the conjunctiva of one eye. In addition, a dental 
acrylic implant was fastened to the animal’s skull using stainless steel screws. The 
implant held in place a stainless steel post used to restrain the animal’s head, and a 
stainless steel recording chamber positioned to access the rFN and VN (posterior 
and lateral angles of 28° and 30°, respectively). Animals were given 2 weeks to 
recover from the surgery before any experiments were performed.

data acquisition. During the experiments, conducted during the light period of 
the light/dark cycle, monkeys sat comfortably in a primate chair located on a ves-
tibular turntable, and the animal’s head was centered in a stationary 1-m3 mag-
netic field coil system (CNC Engineering). Extracellular single-unit activity was 
recorded using enamel-insulated tungsten microelectrodes (7–10-MΩ imped-
ance, Frederick-Haer). The location of the rFN and VN was determined relative 
to the abducens nucleus, which was identified based on its stereotypical neuro-
nal responses during eye movements. Turntable velocity was measured using 
an angular velocity sensor (Watson Industries). Gaze and head positions were 
measured using the magnetic search coil technique as previously described24,25. 
During experiments, unit activity, horizontal gaze, head and target positions, and 
table velocity were recorded on DAT tape for later playback. Action potentials 
were discriminated during playback using a windowing circuit (BAK) that was 
manually set to generate a pulse coincident with the rising phase of each action 
potential. Gaze, head and target position, and table velocity signals were low-pass 
filtered at 250 Hz (8 pole anti-aliasing Bessel filter) and sampled at 1,000 Hz.

Behavioral procedures. Head-restrained procedures. Monkeys were trained to 
follow a target light (HeNe laser) that was projected, via a system of two galva-
nometer-controlled mirrors, onto a cylindrical screen located 60 cm away from 
the monkey’s head. Target, turntable motion, torque motor and data displays 
were controlled on-line by a UNIX-based real-time data-acquisition system 
(REX, Laboratory of Sensorimotor Research, US National Institutes of Health). 
Consistent with previous studies of rFN and VN, all neurons were sensitive 
to passive vestibular stimulation but not to eye movements41. Accordingly, to 
verify that neurons were unresponsive to eye movements, neuronal activity was 
recorded during saccades and periods of fixation when head-restrained monkeys 
followed a target that stepped between horizontal positions over a range of ±30°. 
Neuronal responses were also recorded during smooth pursuit eye movements 
made to track sinusoidal target motion (0.5 Hz, 40° per s peak velocity).

Neuronal sensitivities to vestibular stimulation were verified by passively 
rotating monkeys about an earth vertical axis in the dark (whole-body rota-
tion) and also during a paradigm in which they suppressed the vestibulo-ocular 
reflex (VOR) by fixating a laser target that moved with the vestibular turntable 
(termed VOR cancellation (VORc)). The responses of neurons in both the rFN 
and VN were comparable during VOR and VORc (P > 0.05), consistent with these 
neurons’ insensitivity to eye motion. We characterized responses to whole-body 
rotation using two types of stimulation: a 1-Hz sine wave with peak velocity  
of ± 40 ° per s and a typical head velocity trajectory generated during active gaze 
shifts in the head-unrestrained condition, termed ‘active-like motion’ profile. The 
latter stimulus was used to facilitate comparison of neuronal responses during 
passive and active (see below) head rotations.

Head-unrestrained procedures. After a neuron was fully characterized in  
the head-restrained condition, the monkey’s head was slowly and carefully 
released to maintain isolation. Once released, the monkey was able to only rotate 
its head in the yaw axis (that is, earth-vertical rotation) with no pitch or roll  
rotation or translations. The response of the same neuron was then recorded 
during the voluntary head movements made while orienting to a laser target 
projected on a screen in front of the monkey for a juice reward. The target  
alternated from between a position 25 degrees to the right and one 25 degrees 

to the left of midline. Monkeys were required to remain on target at the end of  
the head movement for 500 ms to receive a reward.

Next, using a torque motor (Kollmorgen), we applied a resistive torque to the 
head while the monkeys made active head movements (Fig. 1b). This torque was 
proportional to head velocity and was calibrated such that initially head veloc-
ity was reduced by approximately half that observed during control active head 
movements. One trial consisted of a leftward and then rightward head rotation. 
For simplicity, we show responses in the neuron’s preferred direction. The resis-
tive torque was then kept constant while the monkey learned to adjust his head 
movements to acquire the target (Fig. 1c; learning phase). During the last third 
of the learning phase, we introduced random trials, during which no resistive 
torque was applied (Fig. 1c; catch trials). Finally we stopped applying the resis-
tive torque for an extended period of time while the monkey continued to orient 
to the targets and once again needed to change his head movements in order to 
acquire the target (Fig. 1c; extinction phase).

Analysis of neuronal discharges. Data were imported into the Matlab 
(MathWorks) programming environment for analysis. Recorded gaze and head 
position signals were digitally filtered with zero-phase at 60 Hz using a 51st-order 
finite-impulse-response (FIR) filter with a Hamming window. Eye position was 
calculated from the difference between gaze and head position signals. Gaze, 
eye and head position signals were digitally differentiated to produce velocity 
signals. Neural firing rate was represented using a spike density function in 
which a Gaussian was convolved with the spike train s.d. of 5 ms as previously 
described24,25.

To determine whether a unit could be classified as a VO neuron, we first 
verified that it was unresponsive to eye position and/or velocity by analyzing 
periods of steady fixation and saccade-free smooth pursuit using a multiple 
regression analysis24,25. In addition, spike trains were assessed to confirm that 
neurons neither paused nor burst during saccades. Prior characterizations of 
these same neurons have shown that their responses to head motion are well 
described by a second order head-velocity based equation24,25. Accordingly, a 
least-squared regression analysis was then used to describe each unit’s response 
to head motion stimulation during passive and active head rotations

fr t b S H t S Hv a  ( ) ( )= + +

where fr  is the estimated firing rate, Sv and Sa are coefficients representing sen-
sitivities to head velocity and acceleration, b is a bias term, and H  and H  are 
head velocity and head acceleration, respectively. Note that this equation could 
be used during passive or active motion as well as during the learning and extinc-
tion protocols. Only data for which the firing rate was greater than 20 spikes  
per s were included in regression analyses.

To quantify the ability of the linear regression analysis to model neuronal  
discharges, we determined variance-accounted-for (VAF) provided by each 
regression equation. The VAF was computed as 

VAF fr fr fr= − −1 [ ( )/ ( )]var var

where fr  represents the modeled firing rate (that is, regression equation estimate) 
and fr represents the actual firing rate.

The regression analyses were first applied to data collected in the control pas-
sive and active motion conditions to obtain estimates of neuronal sensitivity in 
each condition before learning. The regression analyses were then applied to 
data collected during the learning phase to estimate average sensitivities for the 
first five, middle five (26–30) and last five (46–50) head movements to calculate 
estimates of the average peak head velocity and neuronal sensitivity for the early, 
middle and late phases of learning (the average peak head velocity was normal-
ized relative to the passive peak head velocity). Finally, to quantify the detailed 
time course of the changes in behavior and neuronal sensitivity, we applied the 
regression analysis to individual head movements as well as obtained the peak 
velocity for each head movement.

To facilitate comparison across neurons, we normalized both peak head veloc-
ity and neuronal sensitivity. Peak head velocity during the learning paradigm 
was normalized using 

H H H H HE a n a= − −( )/( )1

(1)(1)

(2)(2)

(3)(3)
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where HE  is the normalized error in peak velocity, Ha is the head velocity dur-
ing the control active phase, Hn is the head velocity on a given trial and H1 is the 
head velocity on the first trial. This equation results in values near 0 when peak 
head velocity is comparable to that produced for control active movements before 
learning and of 1 when the resistive torque is initially applied and head velocity is 
most drastically attenuated. Similarly, peak head velocity (Hpk) during learning 
extinction was normalized using 

H H H H Hpk n a a= − −( )/( )1

and neuronal sensitivities during learning and extinction were normalized using 

N x P= /

(4)(4)

(5)(5)

where N is the normalized sensitivity, x is the sensitivity on a given trial and P is 
the sensitivity during passive head motion. Equation (5) results in values near 1 
when the sensitivity is the same as during passive head movements. We then fit 
this trial-by-trial data with an exponential curve and calculated a time constant 
for changes in both peak head velocity and neuronal sensitivity.

Statistics. No statistical methods were used to predetermine sample sizes, but  
our sample sizes are similar to those generally employed in the field26. Before 
statistical analysis, normality of distribution was evaluated using Kolmogorov-
Smirnov test. Statistical significance (P < 0.05) was determined using non- 
parametric analysis with either two-tailed Wilcoxon signed-rank or rank-sum test.  
Data are expressed as mean ± s.e.m.

A Supplementary methods checklist is available.
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