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Rapid adaptation of multisensory
integration in vestibular pathways
Jerome Carriot, Mohsen Jamali and Kathleen E. Cullen *

Department of Physiology, McGill University, Montreal, QC, Canada

Sensing gravity is vital for our perception of spatial orientation, the control of upright

posture, and generation of our everyday activities. When an astronaut transitions to

microgravity or returns to earth, the vestibular input arising from self-motion will not

match the brain’s expectation. Our recent neurophysiological studies have provided

insight into how the nervous system rapidly reorganizes when vestibular input becomes

unreliable by both (1) updating its internal model of the sensory consequences of

motion and (2) up-weighting more reliable extra-vestibular information. These neural

strategies, in turn, are linked to improvements in sensorimotor performance (e.g., gaze

and postural stability, locomotion, orienting) and perception characterized by similar time

courses. We suggest that furthering our understanding of the neural mechanisms that

underlie sensorimotor adaptation will have important implications for optimizing training

programs for astronauts before and after space exploration missions and for the design

of goal-oriented rehabilitation for patients.

Keywords: vestibule, vestibular nuclei, astronauts, internal model, vestibular diseases, sensorimotor, adaptation,

sensory reweighting

Introduction

On earth, gravity provides a unique reference axis to which we can anchor our body orientation and
monitor orientation changes. Indeed, as Lacquaniti et al. (2004) have noted, it is a force to which
we are constantly exposed starting from the day we are born. The findings of theoretical as well as
behavioral studies have led to the longstanding hypothesis that the brain builds an internal model of
the expected sensory consequence of our own actions (Wolpert et al., 1998; Wolpert and Ghahra-
mani, 2000; Herzfeld et al., 2014)—which is required for accurate spatial orientation, the control
of posture, and the generation of precise movements. On earth, the expectation of the constant
force of gravity is an inherent component of this internal model. By combining the information
available from different modalities (i.e., the vestibular, proprioceptive and somatosensory as well
as the visual systems) with its internal model, the brain can sense and anticipate the consequences
of the force of gravity (reviewed in McIntyre et al., 1998; Zupan et al., 2002). During space explo-
ration missions, however, gravity becomes minimal resulting in a mismatch between the brain’s
expectation of sensory consequence of movement and that actually experienced. This has impor-
tant implications for astronauts. Specifically, astronauts show impaired balance, locomotion, gaze
control, dynamic visual acuity, eye–head–hand coordination during the space flight (reviewed in
Souvestre et al., 2008).

The effects of this decrease in gravity are most pronounced immediately after the transi-
tion to microgravity (Montgomery et al., 1993). When moving, astronauts not only experience
impairments in sensorimotor performance but also report spatial disorientation and destabilizing
sensations such as the feeling of have suddenly turned upside-down and/or difficulty in sensing the
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location of their own arms and legs (Souvestre et al., 2008). It
is generally thought that these symptoms arise because the inte-
gration of sensory input from the vestibular system with that
from the proprioceptive, somatosensory, and visual systems mis-
informs the brain relative to its existing (i.e., earth-based) “inter-
nal” model of the expected sensory consequences of motion
(Freeman, 2000). This conflict between the brain’s expectation
of sensory feedback and the actual sensory feedback experi-
ence in microgravity is also thought to be the cause of space
motion sickness experiences during the initial stages of space
flight (Freeman, 2000; Oman and Cullen, 2014). Overall, nearly
70% of all astronauts experience impaired motor performance
and/or space motion sickness (Lackner and Dizio, 2006). To
develop new training and treatment approaches, it is important
to understand the mechanisms that underlie these symptoms as
well as those that are responsible for recovery.

As discussed below, our recent work provides 2 major
advances in this area. First we have shown that neurons that
sense “sensory conflict” from the otoliths can be found at the
first stage of central vestibular processing (i.e., vestibular nuclei;
Carriot et al., 2013, 2014, 2015), and that the cerebellum plays
a key role in computing the difference between expected and
actual vestibular input during active motion (Brooks and Cullen,
2013). Second, our work shows that when the vestibular input
experienced during motion is altered relative to normal condi-
tions, the dynamic re-weighting of multimodal inputs enables the
sensorimotor adaptation observed during behavioral recovery.

Neural Correlates of Sensorimotor
Adaptation: Sensory Conflict

In single unit recording studies we have shown that a subclass of
neurons in the vestibular nuclei, which project to the spinal cord
and to vestibular thalamus, respond preferentially to passive head
movements. For example, during everyday activities, the otoliths
are activated both by gravity and by our own self-motion (Carriot
et al., 2014). In response to active motion, the otolith afferents in
the 8th nerve send robust signals to the vestibular nuclei (Jamali
et al., 2009). However, at the next stage of processing, this “reaf-
ferent” sensory input is canceled (Carriot et al., 2013, 2015). Our
recent work further suggests that this cancelation is mediated by
a mechanism that compares the expected consequences of self-
generated movement (computed by an internal model located
in the cerebellum) and the actual sensory feedback (Figure 1A).
Notably, the un-canceled sensory input (“exafference”) resulting
from passive movement is thought to allow the brain to compen-
sate for unexpected postural disturbances and ensure perceptual
stability (reviewed in Cullen, 2012). Such a mechanism is simi-
larly consistent with the observation that impairments in balance,
locomotion, gaze control, dynamic visual acuity, eye–head–hand
coordination and perception are most serious during the initial
phase of space flight and re-entry. Once the brain’s internal model
had been updated to account for the change in the forces grav-
ity, it learns to expect a different pattern of input from the 8th
nerve during motion that again ensures accurate motor control
and perceptual stability.

Neural Correlates of Sensorimotor
Adaptation: Dynamic Re-Weighting of
Multimodal Inputs

Indeed, although the symptoms of space motion sickness/spatial
disorientation can initially be quite debilitating, they decrease
over time (from 1 h to 4 days) such that astronauts are able to
comfortably make voluntary head movements during a mission.
Astronauts again experience these symptoms upon returning to
Earth’s 1-g environment. Because access to astronauts is more
straightforward in this latter condition, it is more often the focus
of quantitative studies. Interestingly, aspects of the motor perfor-
mance observed after returning to 1-g environment astronauts
are similar to those observed in the patients from acute unilat-
eral vestibular peripheral loss (see also Mulavara et al., 2012). In
both conditions, the actual vestibular feedback experienced dur-
ing self-motion is initially different from that which is expected.
Recent studies in our laboratory have provided insights into the
neural mechanisms that underlie the adaptation of the sensori-
motor integration following peripheral vestibular loss (Sadeghi
et al., 2010, 2011, 2012; Jamali et al., 2014).

In particular, we discovered that compensation is mediated by
the dynamic reweighting of inputs from different modalities (i.e.,
extravestibular versus vestibular) at the level of the single neu-
rons that constitute the first central stage of vestibular processing.
At least two types of extravestibular inputs can substitute for the
lost vestibular input, (1) proprioception and (2) motor efference
copy signals. As reviewed above, in normal conditions, vestibular
responses to active motion are suppressed when there is a match
between the brain’s estimate of proprioceptive feedback and the
actual sensory feedback. However, under normal conditions (1)
passive stimulation of neck proprioceptors in isolation does not
alter neuronal responses and (2) the generation of motor effer-
ence copy signals does not alter neuronal responses when the
head is prevented from moving (i.e., in this condition there is
a mismatch between expected and actual feedback). In contrast,
following peripheral vestibular loss, neurons respond differently.
First, robust response to passive stimulation of neck proprio-
ceptors are rapidly unmasked in the early vestibular pathway
(Figure 1B, top panel, red trace), can be linked to the compen-
sation process as evidenced by faster and more substantial recov-
ery of the resting discharge in proprioceptive-sensitive neurons
(Sadeghi et al., 2010). Furthermore, when the head is restrained
neuronal responses to motor efference copy are unmasked over
the course of weeks (Figure 1B, top panel, purple trace).

The Dynamics of Behavioral Adaptation:
Vestibular Compensation and Re-Entry

The time course of the dynamic re-weighting of multimodal
information observed at the level of single neurons, follows
a similar time course to the improvement observed in (1)
patient performance following vestibular loss and (2) astronaut
return back to earth (Figure 1B, compare top and middle pan-
els). First, patients generally show significant improvement in
postural performance in first days after lesion, with more gradual
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FIGURE 1 | Sensorimotor adaptation during vestibular

compensation and re-entry. (A) Proposed mechanism for the selective

encoding of exafference. Vestibular reafference is canceled when the

actual sensory input matches the expected sensory consequence of

motor command. (B) Top panel: the time course of dynamic

re-weighting of multimodal inputs during vestibular compensation. Middle

panel: the time course of the behavioral adaptation for vestibular

patients as well as astronauts after re-entry. Bottom panel: the

contribution of vestibular and neck inputs to the neuronal detection

thresholds over the course of recovery after vestibular loss.

improvement seen within a 1–2 weeks (Figure 1B, middle panel,
gray trace adapted from Gauchard et al., 2013). Early sensorimo-
tor symptoms include significant head tilt in the roll plane toward
the lesion and a tendency to deviate toward the lesioned side
when walking (reviewed in Smith and Curthoys, 1989; Curthoys
and Halmagyi, 1995). Second and similarly, astronauts show
rapid sensorimotor learning in the first day after return, with
more gradual improvement in the following weeks ultimately
returning performance to pre-flight levels. Superimposed in

Figure 1B (middle panel) for comparison is an example of the
adaption that occurs following return from space flight (e.g.,
locomotor performance; Mulavara et al., 2010). A similar time
course has been reported for balance control recovery (Paloski
et al., 1992; Reschke et al., 1998), as well as perception, spatial
orientation, eye–head and head-trunk coordination following re-
entry (Glasauer et al., 1995; Bloomberg et al., 1997; Reschke et al.,
1998; Bloomberg and Mulavara, 2003; Courtine and Pozzo, 2004;
Clement and Wood, 2014).
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Neural Correlates of Perception: Dynamic
Re-Weighting of Multimodal Inputs

Recently, we have further demonstrated that, following partial
vestibular loss, neurons at the first central stage of vestibular
processing, in the vestibular nuclei, show increased variability
in response to vestibular stimulation. This increase in variabil-
ity does not improve over time and ultimately constrains neural
detection thresholds (Jamali et al., 2014; Figure 1B, bottom panel,
blue trace). As noted above, these neurons not only contribute to
posture and balance via projections to the spinal cord, but also
send information to the thalamus, and then on to regions of cere-
bral cortex. Accordingly, they likely make a vital contribution to
the perception of spatial orientation and self-motion (reviewed in
Cullen, 2012). This then raises the question: What mechanisms
underlie the observed improvements in perceptual threshold?
Indeed, we found that sensory substitution with extravestibular
(i.e., proprioceptive; Figure 1B, bottom panel, red trace) inputs
provides a neural substrate for improvements in self-motion per-
ception following vestibular loss (e.g., Bergenius et al., 1996; Cut-
field et al., 2011; Cousins et al., 2013) which similarly shows
significant improvement over this same time frame.

Conclusions

It is noteworthy that dynamic reweighting of extravestibular
inputs occurs in the same neurons that sense “sensory conflict”
during self-generated motion—namely at the first stage of central
vestibular processing. Thus, sensorimotor adaptation in condi-
tions where sensory input is altered (e.g., after vestibular loss
of function or experiencing a new gravitational environment)
appears to involve the simultaneous updating of internal models

and the dynamic re-weighting of multimodal input. We specu-
late that the central nervous system utilizes a similar multimodal

strategy to compensate for changes in gravity, experienced in
both of these conditions. Our recent neurophysiological findings
further provide a neural correlate for the benefits provided by

rehabilitative strategies that take advantage of the convergence
of multisensory cues during sensorimotor adaptation following
vestibular loss. For example, standard rehabilitation techniques

aimed at improving balance such as Cawthorne–Cooksey exer-
cises incorporate the generation of head and body movements,

which essentially provides multimodal stimulation (i.e., com-
bined vestibular and proprioceptive; reviewed in Ricci et al.,
2010).
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