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Abstract. The objective of system identification methods is to construct a mathematical model of a dynamical 
system in order to describe adequately the input-output relationship observed in that system. Over the past several 
decades, mathematical models have been employed frequently in the oculomotor field, and their use has contributed 
greatly to our understanding of how information flows through the implicated brain regions. However, the existing 
analyses of oculomotor neural discharges have not taken advantage of the power of optimization algorithms that 
have been developed for system identification purposes. In this article, we employ these techniques to specifically 
investigate the “burst generator” in the brainstem that drives saccadic eye movements. The discharge characteristics 
of a specific class of neurons, inhibitory burst neurons (IBNs) that project monosynaptically to ocular motoneurons, 
are examined. The discharges of IBNs are analyzed using different linear and nonlinear equations that express 
a neuron’s firing frequency and history (i.e., the derivative of frequency), in terms of quantities that describe a 
saccade trajectory, such as eye position, velocity, and acceleration. The variance accounted for by each equation 
can be compared to choose the optimal model. The methods we present allow optimization across multiple saccade 
trajectories simultaneously. We are able to investigate objectively how well a specific equation predicts a neuron’s 
discharge pattern as well as whether increasing the complexity of a model is justifiable. In addition, we demonstrate 
that these techniques can be used both to provide an objective estimate of a neuron’s dynamic latency and to test 
whether a neuron’s initial firing rate (expressed as an initial condition) is a function of a quantity describing a 
saccade trajectory (such as initial eye position). 
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1. Introduction 

The use of mathematical models to study the flow 
of neural signals in the complex circuitry of the 

oculomotor system is a well established procedure. 
However, the analyses of oculomotor neural discharges 
so far published have not taken advantage of the 
power of optimization algorithms developed for system 
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identification purposes. In this article, analysis tech- 
niques as well as the usefulness and power of the al- 
gorithms will be illustrated by analyzing the discharge 
characteristics of two typical neurons belonging to a 
class of cells called inhibitory burst neurons (IBNs). 
IBNs, along with excitatory burst neurons (EBNs), are 
monosynaptically connected to, respectively, antago- 
nist and agonist motoneurons that innervate extraocu- 
lar muscles. Together IBNs and EBNs are thought to 
provide the principal drive onto these cells during the 
rapid movements of the eyes called saccades (Hikosaka 
and Kawakami, 1977; Hikosaka et al., 1978; Igusa 
et al., 1980; Sasaki and Shimazu, 1981; Scudder, 1988; 
Strassman et al., 1986a, 1986b; Yoshida et al., 1982). 
The algorithm we present is based on the previous work 
of Rey and Galiana (1993) in which they described a 
novel method for analyzing vestibular nystagmus. The 
algorithm presented here allows for optimization across 
multiple eye trajectories simultaneously and has pro- 
vided us with a new method of objectively investigat- 
ing: (1) a burst neuron’s dynamic latency, (2) how 
well a given model predicts a neuron’s discharge pat- 
tern, (3) whether increasing the complexity of a model 
is justifiable, and (4) the relationship between ini- 
tial conditions and quantities describing the saccades’ 
trajectories. 

We based our analysis of IBN firing rate on physi- 
ological models such as the one described in Fig. 1A 
(Jurgens et al., 1981), which is a modification to the 
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original Robinson model (1975). Such a model pre- 
dicts that burst neuron firing rate is related simulta- 
neously “upstream” to a motor error signal .5(t) = 
AT - AE*, where AT is desired saccade amplitude 
and AE* is the angle the eye has turned and “down- 
stream” to the dynamics of the saccade. In this study, 
to illustrate our approach, we have concentrated on es- 
timating IBN activity based on downstream signals. 
Specifically, we postulate different linear and nonlin- 
ear dynamic black-box models that predict IBN firing 
rate based on properties of the eye’s trajectory and burst 
history (Fig. 1B). 

For didactic purposes, the oculomotor plant can be 
approximated as a simple first-order visco-elastic sys- 
tem (Robinson, 1970; see Fuchs et al., 1985, for a 
review). In this simplified view motoneural firing rate 
is written as 

MN(t) = Y + kE(t - td) + b&t - tJ, (1) 

where MN(t) is neural firing rate, k and b are con- 
stants, r is a bias term, E and E are eye position 
and velocity, respectively, and td is a delay. During 
rapid eye movements (saccades), viscous forces dom- 
inate plant dynamics, and the motoneuron discharge 
has been further simplified as MN(t) cx k(t - td) 
(Robinson, 1964). Consistent with the view that burst 
neurons monosynaptically excite motoneurons, the dy- 
namics of burst neuron discharges have also been 
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Figure 1. A) The classic local feedback model for saccade generation. This is the version proposed by Jurgens et al. (1981) as a modification 
to Robinson’s (1964) early model. AE* is the efference signal giving the angular rotation of the eye that has occurred since the onset of the 
saccade and is obtained by integrating the burst neuron output: this assumes that B K E. AT is the desired angular rotation of the eye. E is 
the actual eye movement that is generated as a result of the motoneuron signal passing through the plant dynamics of the eye. B) Upstream 
forward and downstream inverse black-box models of the burster firing rate. s(t) = AT - AE*, the motor error signal that arises from A. This 
study focused exclusively on the downstream inverse model. The model is termed an inverse model because the algorithms we used required the 
system noise to appear at the output of the system. Consequently an inverse model was formulated to describe the downstream model studied 
in our analysis; that is, the more noisy burst neuron firing rate (B(t)) was estimated based on dynamic models in which eye movement (E(r)) 
was the input. 
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approximately described by B(t) = hE(t - td), where 
B(t) is the burst neuron firing rate (Van Gisbergen 
et al., 1981). 

In reality, it is necessary to use more elaborate mod- 
els in order to describe the oculomotor plant (Robinson, 
1964). A description of the motoneuron discharge that 
incorporates an eye acceleration (E) as well as an eye 
velocity term has been proposed (Keller, 1973; Van 
Gisbergen et al., 1981). These investigators further 
proposed that a better description of burst neuron firing 
rate can be obtained with 

B(t) = f(E(t - td)) + mE(t - Q), (2) 

where f(E) is a nonlinear function of eye velocity and 
m is a constant. 

Most recent models of motoneuron discharge pat- 
terns contain a pole term that appears as the derivative 
of the firing rate and permits the slow decline or “relax- 
ation” of motoneuron activity after the eye position has 
reached steady state ( Goldstein and Robinson, 1984; 
Optican and Miles, 1985; Fuchs et al., 1988). Such 
a term was present in the eye plant model originally 
proposed by Robinson (1964): 

MN(t) = r + boE(t - td) + blg(t - td) 

+ b&t - td) - c&t) (3) 

and by extension 

B(t) = r + boE(t - td) + blk(t - td) 

+ bpqt - td) - c&t), (4) 

where r, bo, bl, b2, and c are constants and are not 
necessarily the same in Eqs. (3) and (4). 

Equations (2) and (4) suggest a more general model 
for the firing rate of burst neurons based on eye dynam- 
ics in which there is a constant bias term, nonlinearities, 
and a pole in the system, for example, 

B(t) = r + boE(t - td) + blE(t - td) 

+ dli2(t - td) + d2z3(t - td) 

+ b&t - td) - c&t), (5) 

where dl and d2 are constants in the added terms that 
approximate the nonlinearity in Eq. (2). In this article 
we show how system identification methods can help 
us choose the important terms in Eq. (5). In this study, 
we have restricted our analysis to variations of Eq. (5) 

where either no pole term is included or where a pole 
term is considered but there are no nonlinear terms. 
However it is theoretically possible to extend the meth- 
ods presented here to the general form of Eq. (5), in 
which the nonlinear terms are additive, since the deriva- 
tion of the gradient is fairly straightforward (Sales and 
Billings, 1990; Johansen and Foss, 1993). Further- 
more, it is also possible to extend these methods to 
nonlinear models in which the terms are not additive 
(as long as the gradient can be formulated); however, 
such models may not converge. 

In each of the models described above, a delay (td) is 
included. This delay reflects in part the time required 
for the burst neuron activity to activate the motoneurons 
(axon conductance time and a synaptic delay) as well 
as the time required for activity in the motoneurons to 
drive the extraocular muscles (axon conductance time, 
synaptic delay, and muscle fiber activation times). Pre- 
vious investigators have determined the lead time of 
burst neurons using one of two methods: (1) determin- 
ing the onset of the first spike relative to the onset of 
the eye movement or (2) calculating the time at which 
the burst frequency exceeds a specific threshold value 
(see the review in Hepp et al., 1989). These meth- 
ods share a common feature; only the beginning of 
the saccade-related burst is used to determine the lead 
time between the neuronal discharge and saccadic eye 
movement. There are a number of limitations inher- 
ent in using such a method to determine the latency 
to a step input: (1) the presence of noise in the fir- 
ing discharge causes uncertainty in the time at which 
the discharge crosses a threshold (Fig. 2, panel 2); 
(2) the initial spikes may not drive the movement be- 
cause it may require a number of spikes to depolarize 
the downstream neuron; and (3) as illustrated (Fig. 2) 
for a first-order system (Eq. (l), where r = 0 and the 
time constant, f = 240 ms), the lead time determined 
as the time the response crosses a threshold (bottom 
panel) is dependent on the input to system (top panel); 
a larger input results in a reduction in the apparent lead 
time, while in reality, the lead time for both inputs 
is the same. In our study, a neuron’s “dynamic” lead 
time was determined by modeling dynamics between 
the system’s input and output using all of the data in a 
saccade, not just the initial portion. This method pro- 
duces the same estimate of latency, regardless of the 
amplitude of the input signal if the assumed model is 
appropriate. To evaluate lead-time we shifted the unit 
discharge in time (td) until an optimal model fit was 
obtained for a simple dynamic model which included 
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Input2 a neuron’s initial firing rate (expressed as an initial con- 
dition) is linked to one of the quantities describing the 

not the input as used here (see Fig. IB). The reason 
for having burst neuron firing rate as the output is that 
the estimation algorithms we employed require that the 
noise be in the output (see below). The method used 
by Van Gisbergen et al. (1981) for fitting Eq. (2) re- 
quires interaction to remove the acceleration term by 
trial and error. We propose a simpler nonlinear regres- 
sion algorithm for fitting Eq. (2). Regarding the more 
complex method that can also fit poles (or dependen- 
cies on the derivative of the firing rate) in models such 
as the ones in Eqs. (4) and (.5), we utilized two versions 
of the more complex algorithm: one that uses the ac- 
tual initial firing rate in the burst to estimate the initial 
conditions (Ba in Eq. (7) below) and another that uses 
all of the saccades and fits the initial conditions as extra 
parameters. 

2.1. Dynamic Models for Firing Rate 
T,, k--+ 

T,, - 
100 ms 

Figure 2. An example system demonstrating the limitations inher- 
ent in using a threshold in order to determine latency. The lead-time 
determined by the threshold method (second panel) is dependent on 
the noise as well as the amplitude of the input to system (top panel). 
In this example, a larger input will result in a reduction in the mea- 
sured lead time (compare t,l and t,z). In contrast, if the lead time 
is determined by modeling the dynamics between the system’s in- 
put and output (MN(t) = kE(t - td) + bi(t - rd)) the estimate of 
latency (td) remains constant regardless of the amplitude of the input 
signal (bottom panel). 

an eye velocity and bias term (discussed in more detail 
in a later section). 

We employ system identification methods in order to 
objectively determine how well different formulations 
of Eq. (5) predict the discharge pattern of burst neurons 
in the cat and monkey. The methods fit burst neuron 
firing rate across many saccades simultaneously and 
automatically. In addition, we demonstrate that these 
techniques can be used both to provide an objective esti- 
mate of a neuron’s dynamic latency and to test whether 

This section describes the methods used to estimate the 
parameters in the simple specific model described be- 
low by Eq. (6). A similar method was developed by Rey 
and Galiana (1993) for the analysis of the slow phase 
response of the vestibulo-ocular reflex (VOR). As in 
their method, we employ a least squares technique for 
the analysis, but our method differs from this. In their 
analysis, the VOR was characterized as a continuous 
response with transient deviations, whereas in our anal- 
ysis of saccades the response is reinitialized for each 
saccade. In order to transform the continuous-time 
model in Eq. (6) into a discrete-time representation, 
a backward-diference approximation was employed. 
This procedure (also called the Euler approximation) 
is commonly used to produce digital simulations of 
analog systems. In the transformation, the derivative 
of a continuous-time function is approximated by the 
difference between two consecutive samples (moving 
backwards in time) of the signal to be differentiated 
(the linear difference equation). 

2. Methods 

In this section we (1) begin with a specific model 
(Eq. (6) below) expressed as a continuous-time equa- 
tion, (2) formulate the z-domain representation of 
the model from the Laplace Domain representation, 
(3) formulate the linear difference equation from the 
z-domain representation in order to represent our model 
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as a discrete time series, and finally (4) express the lin- 
ear difference equation in terms of the shift operator 
9-l required by the System Indentification Toolbox of 
Mathworks Inc. (1987). The general formulation for 
this method is presented in the Appendix. 

Consider the example of the continuous-time 
equation: 

B(t) = r + b,,E(t - td) + b&(t - td) - c&>. (6) 

This equation is represented in the Laplace Domain as 

bo + bls cBo 
B(s) = e? ]$(~(s) + - +L 

1+cs s (7) 

The formulation of B(s) in Eq. (7) emphasizes that 
the introduction of a B(t) term in Eq. (6) requires in- 
cluding (or estimating) initial conditions. By replacing 
s = u-;-9, where T is the sampling interval, and not- 
ing that the z transform representation of the Laplace 
transform e-“f” is zWnd, Eq. (7) can be represented in 
terms of the corresponding z transform: 

/3(z) = ZP 
cBoT rT 

+ 
T + c - cz-1 

+ g- (8) 

(A review of the basic properties of the z-transform can 
be found in Kuo, 1992.) By dividing the numerator and 
denominator of the first two terms by (T + c), Eq. (8) 
becomes 

bor+hr hz-’ -__ 
/j@) =Z-nd (T+c) (T+c) C(z) 

1-s 

+ 
G+c) + rT 

1-s l---l’ 
(9) 

Then by defining 

go = (boT + h)/(T + c> (104 

gl = -h/U + c> (lob) 

fi = c/V + cl, UOC) 

Equation (9) can be rewritten as 

B(z)=z-~~~~~~~~~‘~(~)+ flBoT I rT . 
1 - fiz-’ 1 - z-1 

By rearranging terms Eq. (11) may, in turn, be ex- 
pressed as 

B(z) = Z-nd(gO + ,dX(z) + fiz-‘p(z) 

-I- fiBoT + 
rT(l - fiz-‘> 

1-z-l (12) 

Finally by taking the inverse z transform of Eq. (12) 
we obtain the linear difference equation: 

p(n) = goE(n - nd) + glE(n - nd - 1) 

+ ./‘I B(n - 1) + fi BoTI(n + 1) + r(1 - fi), 

(13) 

where in order to determine the inverse z transform of 
Eq. (12), the following basic properties of the z trans- 
form are utilized: 

Z(x(n - nd)) e z-““X(z) 

rTz 
Z[r] e - 

z-l 
rTf,z-’ = rTf1, because rTf1 is a constant. 

In addition, note that the inverse z transform of a 
constant value is a delta function. In Eq. (13), the 
delta function is represented by the signal I (n + nf), 
which is a discrete impulse at time n = - nf samples, 
that is, 

I(n+nf) = 
l 

0 forn#-nf 
1 forn = -nf’ 

where the first estimated value of Bk(n) in the kth 
saccade will be for the sample interval designated 
n = 1. 

The estimation of parameters was carried out, us- 
ing the commercially available System Identification 
Toolbox (SIT) of Mathworks Inc. (1987), in which 
the available OE and ARX estimation routines were 
modified in order to account for, or estimate, the firing 
rate at the beginning of saccades in models with and 
without pole terms, respectively. The Matlab SIT re- 
quires a model formulated in terms of a polynomial in 
ascending powers of the shift operator q-’ defined by 
the relation 

q+E(n) = E(n - j). (14) 
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Accordingly, the linear difference equation in Eq. (13) 
can be expressed as 

I = q-“d(go + g&W0 + fiq-‘B(n) 

+ flBOT * Ztn + 1) + rtl - fi>, (15) 

which can be further simplified to obtain 

B(n) = qpnd 
(go + &q-l)E(n) 

(1 - f14-‘1 

+ .fiBOT * Z(n + 1) + r 

(1 - f14-‘) ’ 
(16) 

where the second term on the right emphasizes again 
that the introduction of a B(t) term in the time domain 
representation Eq. (6) requires including (or estimat- 
ing) the initial conditions (Ba). 

Equation (16) states that the burst frequency can be 
calculated exactly once the eye movement trajectory, 
and the initial conditions are known. However, this 
is unrealistic because there are other signals beyond 
our control that affect the system. Together, these can 
be called noise (y(n)), and accordingly, B(n) can be 
represented by a model of the form 

B(n) = qpnd 
(go - &q-9 E(n) 

(1 - f14-‘1 

+flBoT*e+l) +r+y(n) 

(1 - f14-‘) 
1 (17) 

where y(n) is a noise term (not necessarily white). 
The above model structure is called an output error 

(OE) formulation, which is one of a number of specific 
variants of the basic dynamic regression model struc- 
ture, which is based on autoregression with exogenous 
inputs (ARX processes). The rationale for choosing 
OE models in the analysis of IBN discharges is ad- 
dressed in the Discussion and Appendix. 

Equation (17) describes a model of the discharge of 
a burst neuron during a single saccade (there is only 
one initial condition, Ba). In order to account for the 
effect of the firing rate at the beginning of each saccade, 
Eq. (17) is rewritten as 

+f&T*Z(n+1) +rk+y(n) 

Cl- f14-‘) 
> (18) 

where: B$ is the initial state of firing rate occurring at 
the beginning of the kth saccade. 

Note, that g(q) andf(q) do not have superscripts, 
since they are assumed to be shared by all saccades; 
whereas rk the term allows the resting rate to be esti- 
mated separately for each saccade. The delay rzd was 
not solved for explicitly in all the models we tested. 
Instead, we first determined an optimal delay (nd) by 
adjusting the value of nd until the best fit of the burst 
neuron firing rate was obtained using an accurate model 
(see Section 3). This procedure enabled us to determine 
nd more clearly and will be discussed in the subse- 
quent section relating to Fig. 5. We used this particular 
value of delay to investigate the goodness of fit of other 
models; the eye movement data set was appropriately 
shifted in time by the estimated nd. Equation (18) can 
be expressed as 

Bktn> = $$E”(n)+$$Z(n+nf)+rX+y(n), 

(19) 
where 

k?(q) = go + gq-’ 

f(4) = 1 + .fiq-‘, 

and pk(q) is a representation of the unknown initial 
state of saccade k, which is proportional to (B,k), due to 
new set-points introduced before the kth saccade. The 
term (pk(q)/f(q))Z(n + nf) therefore represents the 
transient component of the system-that is, the influ- 
ence of the initial states of the system at the beginning of 
each saccade (B,k) on B(n). Note, that the Laplace rep- 
resentation Eq. (7) required a similar term to represent 
the influence of initial conditions. In a model formula- 
tion in which there are no poles, this transient term is 
not needed. A schematic representation of Eq. (19) is 
illustrated in Fig. 9 for the single pole case. 

In the specific model formulation given above, the 
number of poles (nf) = 1 and the number of zeros 
+ 1 (ng) = 2. In an estimation in which ns was the total 
number of saccades, the total number of parameters (P) 
in Eq. (6) equals the number of parameters in g(q), 
f(q), plus the parameters for the initial states and a 
single bias (common to all saccades): 

P =nf+ng+ns*nf+l. WV 

Since we used 40 saccades to estimate the parameters, 
P = 1 + 2 + (40 * 1) + 1 = 44 for this model. The 
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parameters in Eq. (19) are conveniently described as a 
column vector 8: 

s  ̂ = [go> g1, fl, PA* . , PO”“, r]‘. (21) 

The parameter estimates e^ (^ denotes the estimate 
of 0) were determined with Matlab using SIT. The par- 
ticular model we have described above Eq. (19) has 
the OE structure with one pole. Parameters were es- 
timated with a modified version of the OE function 
which takes into account initial conditions. Parame- 
ters were estimated using a one-step-ahead predictor, 
and the damped Gauss Newton algorithm for locating 
the minimal error (see details in the Appendix). For 
models in which there were no poles, we used an ARX 
function; the parameters in this model structure were 
estimated using the least squares method. The param- 
eters 0 describe the model in terms of Eq. (19). These 
parameters may, in turn, be transformed into the con- 
tinuous time parameters bo, bi and c using Eqs. (lOa), 
(lob), and (10~). 

The results of estimating parameters for models of 
various complexity are presented in the following sec- 
tion, beginning with a simple one-parameter equation 
in which burst frequency is proportional to eye ve- 
locity (B(t) = bi h). Increasingly complex models 
that incorporated combinations of the terms included 
in Eq. (5) were then tested. In order to determine which 
terms are most relevant for estimating the firing be- 
havior of an IBN, we determined whether there was a 
decrease in the variance (VAR) of the fit, and a corre- 
sponding increase in variance-accounted-for (VAF) by 
the model when different terms were added to the sim- 
ple model of the burst neuron’s firing rate. The VAF 
was defined as [ ( 1 - (VAR/std)) * 1001, where std is the 
standard deviation of the data set about a mean. The 
VAF in linear models is equivalent to the square of the 
correlation coefficient (R2). Therefore, a model with a 
VAF of 64% actually provides as good a fit to the data 
as a linear regression analysis that yields a correlation 
coefficient of 0.80. 

2.2. Cost Function 

As reviewed by Caines (1988), model complexity 
should be considered a part of the criterion for an ad- 
equate fit. Otherwise, as the number of parameters 
in a system is increased, the predictor is likely to fit 
the output profile better (given that the input is suf- 
ficiently rich). Put another way, if more parameters 

are included in a model, it is natural to expect a de- 
crease in fit error. Without penalizing for complexity 
one may choose a very high-order model even for the 
simplest of systems. By incorporating a criterion that 
restricts model complexity one can impose a tradeoff 
between complexity and error of the fit. There are sev- 
eral formulations for this tradeoff (see Caines, 1988 
for a review). We present here one of them called 
the Bayesian Information Criterion (BIC) (Schwarz, 
1978). 

The BIC takes into account the automatic decrease 
in fit error that follows the addition of parameters to 
a model. In large samples, it produces a ranking akin 
to the posterior odds ratio, the ratio of probabilities of 
two models being correct given the available data (see 
Schwarz, 1978, and Zellner, 1984, for a discussion of 
the implications and applications of odds ratios). In 
effect, the BIC value indicates whether an increase in 
the complexity of the model is warranted considering 
the accompanying decrease in the error of the fit, that 
is, a decrease in the BIC value suggests that the in- 
crease in model complexity is warranted. We chose to 
use the BIC in this study, rather than the AIC (Akaike 
Criteria, another widely used cost function), since the 
AIC tends to be biased toward more complex models 
(Caines, 1988). 

We have used minimum prediction error methods 
based on a least squares criterion. Least squares meth- 
ods assume that the noise has a Gaussian distribution. 
In our case, the source of noise is hardly tractable, and a 
Gaussian assumption is made for the sake of simplicity. 
The choice of least squares is also a practical one since 
there are a number of very fast least squares algorithms 
in the literature. Define 6 as the cost function (least 
squares) to be minimized: 

S(Q) = 5 !&n, e”), 
n=l 

where u represents the error of the model fit at sample n. 
The BIC cost function is then defined as 

(22) 

This test penalizes the use of a large number of param- 
eters (P) relative to the number of data points in the 
input(N). 
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2.3. Experimental Methods 

To illustrate the use of the optimization algorithms out- 
lined above, we analyzed as, stated in the Introduction, 
the firing behavior of IBNs. The surgical prepara- 
tion of the animals and methods used for obtaining the 
extracellular recordings from brainstem neurons were 
similar to those previously described (cat: Pare and 
Guitton, 1990; monkey: Cullen and McCrea, 1993). 
One cat and one monkey were prepared for chronic 
extracellular recording. The IBNs described in this 
study were identified on the basis of their character- 
istic “burst” discharge during horizontal saccadic eye 
movements in the ipsilateral direction and their location 
in the “IBN area” caudal and ventral to the abducen’s 
nucleus (Fig. 3, and see descriptions in Hikosaka and 
Kawakami, 1977; Kaneko and Fuchs, 1981; Yoshida 
et al., 1982; Scudder, 1988). These neurons were also 
characterized as IBNs based on their responses during 
quick phases of vestibular nystagmus evoked during 
rotation of the vestibular turntable and by their lack of 
response during slow phases of nystagmus and smooth 
pursuit eye movements. 

The cat and monkey were trained to orient to a food 
target that appeared unexpectedly on either side of an 
opaque screen (see Guitton et al., 1984, for details). 
In addition, the monkey was trained to orient for a 
juice reward to a target light that was projected on a 
cylindrical screen (Cullen and McCrea, 1993). The 
target was stepped horizontally between positions 5, 
10, 20, and 35 degrees relative to the straight ahead 
position. Burst neuron activity was recorded during 
saccades made with the animal’s head held fixed. Eye 
movements were recorded using the magnetic search 
coil technique. Eye position signals were stored with 
the recorded unit activity on DAT tape (5 kHz sampling 
frequency). The recorded eye position signals were 
low-pass filtered (250 Hz, 8 pole Bessel) and digitized 
at 1000 Hz. Fourier analysis of human and monkey 
ocular saccades has revealed little power above 50 Hz 
(Zuber et al., 1968; Van Opstal et al., 1985; Harris et al., 
1990). Fourier analysis of cat ocular saccades, in this 
study, revealed little power above 30 Hz (Fig. 4A, top 
panel). This is consistent with our observation that cat 
saccades tend to be slower than humans and monkey 
saccades of the same amplitude. Traces were digitally 
filtered at 60 Hz (cat) and 125 Hz (monkey). A low- 
pass finite-response digital filter (order = 50) was ap- 
plied in both forward and backward directions so as to 
ensure zero-phase filtering (Matlab, Signal Processing 

I 100 degls 

8 

200 ms 

Figure 3. Example of the firing rate of a cat IBN (unit 568) during 
two horizontal saccadic eye movements in the head-fixed condition. 
Spike density (SD) (second row) was obtained by replacing each 
spike (top row) by a Gaussian of 5 ms width. The corresponding 
horizontal eye velocity (&). and horizontal (&) and vertical eye 
position (E,) traces are shown in the bottom three rows, respectively. 
Dashed vertical lines indicate the onset and offset of the saccadeusing 
a 20 deg/s eye velocity criterion. 

toolbox). Saccades in which the vertical displacement 
component was more than one-third of the entire sac- 
cade amplitude were not included in this analysis. We 
analyzed only the horizontal component of each sac- 
cade. The onset and offset of a saccade were defined 
using a f20 degis eye velocity criterion. In the analy- 
sis we shifted the burst in time relative to the saccade 
by the estimated latency (see below), and then only 
that portion of the burst that was coextensive with the 
saccade duration was used to fit a model. 
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A Cat Monkey 

Reciprocal Interval 

Frequency (Hz) Frequency (Hz) 

F&E 4. The frequency composition (determined using the fast Fourier transforms algorithm) of saccadic eye velocity (top row) and two mea- 
sures of neuron discharge: (1) the spike density function (second row) which was obtained by convolving the spike train function with a Gaussian 
pulse, and (2) the reciprocal of the interspike interval (third row). Plots are shown for data from cat (A) and monkey (B). Note that the duration of 
the illustrated 20 degree saccade was longer for the cat than for the monkey by a factor of z-2. For this reason the amplitude spectra of the cat data 
contains twice as many points as that of the monkey. The choice of a 5 ms width for the Gaussian permitted us to effectively low-pass filter the 
neural discharge at a frequency comparable to that used for filtering the eye movement signal (compare rows 2 and 1, respectively). Consequently, 
there was no significant signal above about 100 Hz for either the eye velocity or spike density representation of the firing rate. In contrast, the 
reciprocal interval method (third row) resulted in a representation of firing rate that contained significant signal at much higher frequencies. 

The event times of the neuronal action potentials 
were logged, and corresponding spike trains were cal- 
culated (see Cullen and McCrea, 1993, for details). 
We employed a spike density function (Parzen anal 
ysis) to represent the discharge of the burst neurons 
(Fig.’ 3). This function was obtained by convolving the 
spike train function with a Gaussian pulse. We chose 
this method, rather than the reciprocal of the interspike 
interval, to calculate the instantaneous firing frequency 

of the neuron, since it has the advantage of being lin- 
ear, whereas the reciprocal interval method is nonlinear 
and sensitive to noise especially at high frequencies 
(Sanderson and Kobler, 1976; Richmond et al., 1987). 
The sensitivity of the reciprocal interval method to 
noise at high frequencies is apparent in the example 
illustrated in Fig. 4 (lower panels). In addition, by 
using a Gaussian of appropriate width (standard de- 
viation of 5 ms), it was possible to low-pass filter the 
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neural discharge such that it and the eye movement sig- 
nals contained energy over a similar frequency range. 
This is demonstrated in Fig. 4, where the frequency 
composition of the eye velocity (top panels) is com- 
parable to that of the spike density (middle panels), 
whereas the reciprocal interval representation of firing 
discharge (bottom panels) contains significant signal 
power at higher frequencies. We found that (1) de- 
creasing the width of the Gaussian used in the Parzen 
analysis by 50% and/or (2) reducing by 30% the cut-off 
of the low-pass filter used on our eye movement records 
had little effect on the results presented below (both the 
estimated latencies and parameters were not markedly 
changed). 

3. Results of Applying the Parameter 
Estimation Methods 

Using the methods detailed above in Section 2, we first 
computed latency by adjusting the value of the delay td 
to the nearest millisecond until we obtained the best fit 
to the burst neuron firing rate using the simple equation 

B(t) = r + blB(t - td) (23) 

and the more complex equation: 

B(t) = r +boE(t - td)+blf?(t - td) -CA(t) (6) 

80 

1 

301 1 ’ 1 1 8 
0 5 10 15 20 25 

Estimated Latency (ms) 

Figure 5. Example of the resulting errors from fitting a cat IBN’s 
firing rate using a simple downstream model (2, closed symbols)- 
B(t) = r + 61 i(t - &)-and a more complex downstream model 
(7, open symbols)-E(r) = r +blfi(r - rd) +bzg(f - fd) + cb- 
using different latencies (fd). The optimal dynamic latency was 
12 ms for both models; however, the simple model was considerably 
more sensitive to latency than the complex model. 

These two models correspond to rows 2 and 7 of 
Table 1. Figure 5 illustrates the RMS error of fit at 
latencies near the optimal for these two models. The 
value of td that led to the best fit (minimum RMS error) 
provided our estimate of the dynamic latency. Figure 5 
also illustrates that using a more complex model with 
many parameters makes it more difficult to optimize 

Table 1. RMS, VAF, and BIC values for the downstream models tested. 

S68 HO721 

Model Global fits to 40 horizontal saccades Params RMS* VAFb BIC” RMSa VAFb BIC” 

1 B(t) = b18(t - fd) 1 75.7 25 8.65 181.1 -10 10.40 

2 B(f) = r + bll?(f - fd) 2 44.5 56 7.59 101.7 38 9.25 

3 B(t)=~+blLi(f-fd)+dl~*(f-fd) 5 41.3 59 7.45 100.3 39 9.23 
+d2ri3(t - fd) + b$(f - fd) 

(Van Gisbergen et al., 1981) 

4 B(t)=r+bli(f-fd)+b2i(f-fd) 3 41.8 59 7.47 101.4 39 9.24 
(Approximation to Van Gisbergen et al., 1981) 

5 B(t) = r + boE(t - fd) + bll?(f - td) 3 46.7 54 7.69 97.1 41 9.16 

6 B(t) = r + b&(t - td) + b28(f - td) + h(t) 4 41.0 59 7.43 96.8 41 9.15 
(Initial conditions taken from data) 

7 B(f) = r + blI?(t - td) + bzk(t - fd) + cc(t) 4 32.9 67 7.11 77.8 53 8.77 
(Initial conditions estimated as parameters) (40 initial) 

8 B(f) = r + bli?(t - td) + blE(t - td) 2 32.3 68 6.98 78.8 52 8.79 
(Bias estimated as parameter) (40 biases) 

“Root mean square error. 
h% variance accounted for. 
“Bayesian information criterion. 
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the value of latency. This is due to two factors. First, 
estimating the latency increases the number of param- 
eters from 2 to 3 in Eq. (23) and from 44 to 45 in 
Eq. (6). Hence, changing the value of one parameter in 
Eq. (6) has relatively little influence on the optimized 
result compared to changing one parameter in Eq. (23). 
Second, the values estimated for the initial conditions 
are themselves related to latency. Accordingly, in the 
results that follow, for each cell the delay (nd) was set 
to that value which provided the best fit of firing rate 
using the simple model in Eq. (23) corresponding to 
row 2 of Table 1. 

Table 1 illustrates the RMS errors and VAF and BIC 
values of different model fits for one cat IBN (S68) and 
one monkey IBN (H0721). Row 1 illustrates the per- 
formance of the simplest downstream model we tested 
that relates unit discharge to eye velocity using only a 
gain term. For the monkey neuron, the variance of the 
model’s fit error was actually larger than the variance of 
the data (indicated by the negative sign preceding the 
VAF value). Comparison of these values with those 
obtained when a bias term (Y) was added to the model 
(row 2), indicates that a bias term greatly improved the 
fit of the model for both neurons studied. Note that 
this model (VAF = 56% (cat) and 38% (monkey)) ac- 
tually provided a fit to the data that was as good as that 
described by correlation coefficients of 0.75 and 0.62, 
respectively, in a linear regression analysis. In addi- 
tion, the accompanying dramatic decrease in the BIC 
values for both neurons suggests that the addition of a 
bias term to the model is warranted. Examples of the 
improvement in the fit of IBN firing rate that occurred 
with the addition of a bias term are illustrated for the 
cat IBN in Fig. 6 (compare top two panels). Note the 
excellent fit to even local variations in firing rate. 

In order to investigate the hypothesis of Van 
Gisbergen et al. (1981) that, in a downstream model, 
unit firing can be represented by the addition of a non- 
linear function of eye velocity and an eye acceleration 
term, a model based on Eq. (2), which included a third- 
order nonlinearity and an eye acceleration term but no 
pole term, was tested (Table 1, row 3). For each neuron 
the addition of the higher-order eye velocity terms (dl 
and &) and acceleration term (by) decreased the error 
of the model, but the addition of these terms was far 
less effective in decreasing the VAF than the addition 
of the bias term had been originally. In addition, a more 
simple approximation to the model of Van Gisbergen 
et al. was tested (row 4), in which the proposed non- 
linearity in velocity was expressed, as in row 2, by 
Y + b, i(t - td). This formulation of the nonlinearity 

‘\ B(t) = r + b&t-t,) + b&-t,) + c&t) 

B(t) = b&t-t,,) 

B(t) = r + b&t-t,) 

B,,(t) = r + b,fi(t-t,) + b&t-t,) + c&(t) 

I 100 degls 

200ms 

Figure 6. Examples bf best fits of IBN firing rate during head-fixed 
saccades for an example cat neuron (S68). First and second panels: 
the addition of a bias term greatly improved the model fit based on 
eye velocity (compare top panel (no bias term) and second panel (bias 
and eye velocity terms)). See Tables 1 and 2 (rows 1 and 2). Third 
and fourth panels: examples of the improvement of the fit of cat IBN 
(S68) firing rate with the addition of acceleration and pole terms to 
an eye velocity based model. Third row: initial conditions L&(t) are 
taken from data (see Tables 1 and 2, row 6). Fourth row: ixnitial 
conditions are estimated as parameters (see Tables 1 and 2, row 7). 

In the top four panels the shaded area shows actual firing fre- 
quency, and the solid line the estimated firing based on the equa- 
tion given below each panel. The parameters are given in Table 
2. The corresponding horizontal eye velocity (I?) and eye position 
(E) traces (bottom two rows) are illustrated for each of the three 
saccades, which were of about the same amplitude but had quite 
different trajectories. 

provided as good a fit to the data as one that incorpo- 
rated a higher-order nonlinerity (compare rows 3 and 
4). The significance of eye position in determining the 
firing of IBNs was also investigated (row 5). For the 
monkey neuron this term was actually more relevant 
than the acceleration term (row 4) in estimating the 
unit discharge, while the reverse was the case for the 
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cat neuron. For both of the neurons, the addition of ac- 
celeration, higher-order velocity and position terms (in 
rows 3,4, and 5 ) only slightly reduced the BIC values 
from those calculated for the model that included only 
velocity gain and bias terms (row 2). 

A modification to the model in row 5 was also inves- 
tigated (row 6) which in addition to bias, acceleration, 
and linear eye velocity terms allowed for the estimation 
of a pole in the system. The addition of this term pro- 
vided only a slightly better model fit of the data when 
the initial conditions were taken from the data (com- 
pare VAF in rows 4 and 6). However, when the initial 
conditions were estimated as parameters, this model 
improved the fit considerably (compare VAF in rows 6 
and 7). Example fits to firing rate when initial con- 
ditions were (1) taken from data and (2) estimated as 
parameters are shown in the third and fourth panels of 
Fig. 6, respectively. When the initial conditions were 
estimated as parameters, the fits to the data were as 
good as those described by correlation coefficients of 
0.82 and 0.72 in a linear regression analysis, for the 
cat (VAF = 68%) and monkey (VAF = 52%) neuron, 
respectively. The improved fits, associated with this 
more complex model, can be observed by eye (com- 
pare third and fourth panels). 

Because estimating the initial conditions as pa- 
rameters added a large number of parameters to the 
estimation algorithms (equivalent to the number of sac- 
cades included in the analysis), it was important to 
check whether the corresponding BIC value also de- 
creased. A comparison of the BIC values in rows 4 
and 7 indicated that the large increase in model com- 
plexity was warranted. In the final downstream model 
that was investigated (row 8), the bias term was esti- 
mated separately for each saccade which was analyzed. 
This particular model formulation was of special inter- 
est for two reasons: (1) the method of estimation is 
simpler than for models which include a pole term and 
(2) a variable bias might have specific physiological 
implications. The errors based on this model are il- 
lustrated in row 8. The model fits were as good as 
those based on the model which included a pole term 
and for which initial conditions were fit as parameters 
(compare rows 7 and 8). 

The values that were estimated for the parameters 
in each of the eight downstream models are shown in 
Table 2. It is not our intention here to interpret, in de- 
tail, the significance of particular and relative values 
of each parameter as well as the significance of differ- 
ent models. This is reserved for a subsequent paper 
in which we will present data on our complete popu- 
lation of burst neurons. For our demonstration sample 

of two neurons, the most relevant inputs (or terms) to 
predict IBN firing rate are eye velocity and the bias 
term. The sign of the estimated eye velocity term was 
positive in each model, indicating that the firing rate 
increased with increasing eye velocity in the neuron’s 
“on” direction (ipsilateral) as would be expected from 
previous studies of IBNs. For the cat neuron (S68), the 
estimated bias terms were similar for all models, with 
the exception of the third-order nonlinear representa- 
tion of the Van Gisbergen et al., model (row 3). In this 
latter model, the bias term was generally slightly lower, 
and eye velocity gain was correspondingly higher, as 
might be expected from a curvilinear fit. For the mon- 
key neuron, the bias term was the lowest in the model 
of row 7, and again the velocity gain was higher. For 
both neurons, there was no indication that the bias term 
decreased with either increasing model complexity or 
increasing VAF. 

Although, the addition of an acceleration term to the 
downsteam model slightly improved the fit for both 
neurons, its value was very low and of little conse- 
quence given the very small accompanying change in 
the BIC value. A surprising outcome of the analysis 
was that the sign of the estimated eye position term 
between cat and monkey varied (Table 2, row 5) but 
the influence of the position term was small compared 
to the bias term for both cat and monkey neurons. 

One advantage of identification methods is that they 
permit a quantitative evaluation of initial conditions 
(row 7) and their relation to other movement character- 
istics. As an example Fig. 7 illustrates, for primate 
neuron (H0721), the strong correlation between the 

0 100 200 300 400 500 
Peak Saccade Velocity (deg/s) 

Figure 7. Linear regression analysis (r = -0.82) of the relation- 
ship between the estimated initial conditions (Fig. 6 fourth row) and 
peak velocity of saccades for primate neuron H0721. 
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Table 2. Parameter estimations for the models tested. 

Parameter estimates and SDS 

Global fits to 40 horizontal saccades Parameters S68 HO721 

1 B(t) = bl .@(t - td) 1 bl =i 3.5/0.1 1.X2/.01 

2 B(t) = r + b, E(t - Q) 2 r=f 133.111.3 306.514.2 

bl =f 2.1w.01 .79/.02 

3 B(t) =I’ + bri(t -Q) + d,/?(t - Q) 5 r=f 108.6/4.0 287.419.9 

+d2i3(t - td) + bz.&(t - td) bl =f 2.8/0.1 0.9/0.2 

(Van Gisbergen et al., 1981) dl =rt -.004/.001 .0008/.0008 

d2 = f .oooo/.oooo .oooo/.oooo 

b2 = rt .0063/.0002 -.0002/.0002 

4 B(t) =r f bpk(t - &/) + bzi(t - &I) 3 r=* 134.3/1.3 310.X/4.3 

(Van Gisbergen et al., 1981) bl =% 2.2/0.1 .78/.02 

b2 = f .0064/.0002 -.0002/.0002 

5 B(t) =r + bi,E(t - td) + b,k(t - Q) 3 r=+ 131.0/1.8 299.814.2 

b. = + .62/.13 -.70/.09 

bl =f 2.210.2 .78/.02 

6 B(t) =Y + bli?(t - td) + b$(t - &/) - c&t) 4 r=f 137.90.3 336.214.1 

(Initial conditions taken from data) bl =f 2.uo.2 .66/.07 

b2 = f .0143/.0005 .Ol/.lO 

C=f .003/.09 .0113/.0003 

7 B(t) =I’ + bli(t - Q) + bpi?(t - td) - c&t) 4 r=i 138.U4.3 104.0/40.3 

(Initial conditions estimated as parameters) (40 initial) bl =zt 1.71.2 1.3/0.1 

bz=f .239/.002 .lO/.lO 

c=* .13/.08 .099/.002 

8 B(t) =r + blE(t - td) + b&(t - cd) 2 bl =zt 1.9/.01 1.01/.02 

(Bias estimated as separate parameters) (40 biases) 62 = f .0065/.0002 -.0002/.0001 

estimated initial conditions and the peak velocity (r = 
-.82) of the saccade. The generality and significance 
of this observation, as well as those relating to model 
structure, will be considered in a subsequent report on 
our entire population of cells. 

4. Discussion 

The aim of system identification is to build a mathemat- 
ical model of a dynamical system that best describes the 
data obtained from that system. This article presents 
the first attempt to use system identification techniques 
to investigate neural signals in the brainstem burst gen- 
erator that drives eye saccades. 

The generalized model structure of a linear system 
is (Ljung, 1987, p. 77) 

A(q)yW = 
B(q) 
----u(t) + 

C(q) 
F(q) 

-----e(t), 
D(q) 

where A, B, C, D, and F are polynomials in the shift 
operator q-’ ; u(t) is the sampled input, y(t) the sam- 
pled output, and e(t) the noise. 

Parameter estimation in such complex systems suf- 
fer from convergence and consistency problems; most 
practical applications involve setting to unity, one or 
several of the polynomials. In all the parameter esti- 
mation algorithms used in this study, we assume that the 
system noise appears only on the observed system out- 
put Fig. 9 (output-error (OE) representation; see Ljung 
1987, p. 7.5). This is equivalent to allowing for neu- 
ral and/or instrumentation/measurement noise on burst 
cell activity. In OE systems, estimation algorithms are 
easily available and have been shown to converge to 
accurate parameter estimates for any type of nonzero 
noise. However, we have used an OE formulation not 
only because of its mathematical tractability but be- 
cause it is also a plausible representation of the sac- 
cade burst generator. The burst generator (IBNs and 
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EBNs) is monosynaptically connected to motoneurons 
(MNs), which in turn drive the eye plant. In this sys- 
tem, the major “noise” sources come from (1) other 
neurons that project to MNs and discharge during sac- 
cades; this would include other burst neurons, cells in 
the vestibular-prepositus hypoglossi complex (Baker 
et al., 1981; Cheron et al., 1986a, 198613; Cheron and 
Godaux, 1987; Escudero et al., 1992; Lopez-Barneo 
et al., 1982; Mettens et al., 1994), as well as modula- 
tors that effect alertness and behavioral set; (2) other 
motoneurons that are not driven by the particular burst 
neuron being analyzed; and (3) transmission noise in 
the IBN-MN and MN-muscle synapses. These noise 
sources can be assumed to act on burst neurons (i.e., the 
OE model) if the dynamics between the burst neuron 
and MNs are negligible, compared to those imposed by 
the eye plant. However, we know of no data to support 
such an assumption. We discuss this topic further in 
the last section. 

In our estimation algorithm, we use the equivalent 
of a z transform to represent burst neuron discharge. 
Our data was sampled at 1 kHz, and if the parame- 
ters estimated for the pole terms had approached unity 
(their maximum value, see Eq. (lot)), then small differ- 
ences in the estimation of these parameters would have 
corresponded to large differences in the estimated time 
constant of the transient. In such a case, the estimation 
algorithms could become ill conditioned (Rey, 1992). 
However, in our analysis the estimated pole terms did 
not approach 1, so this issue was not a concern. Nev- 
ertheless, it is possible that such a problem would be 
relevant in the potential analysis of oculomotor neu- 
rons, which are active during slow eye movements and 
fixation as well as during saccades, since it is likely that 
the relevant dynamics may differ for slow versus fast 
eye movements. Recently, it has been demonstrated 
that an ARX parameter estimation algorithm based on 
a “delta” representation for the discrete domain is more 
numerically stable than that based on the traditionally 
used 2 transform representation (Vijayan et al., 1991; 
Pintelon and Kollar, 1991). In the delta representation, 
added stability is obtained by accounting for the sam- 
pling interval used in the estimation. Consequently, 
the delta representation has the advantage that the esti- 
mated parameters change little with sampling rate. We 
suggest that a logical extension of the analysis tech- 
niques described above would be to estimate the pa- 
rameters for a set of OE models, in which the firing 
behavior of neurons active during slow and fast eye 
movements is represented in terms of a delta transform. 

4.1. Prior Analyses of Burst Neuron Discharge 

Our approach has the major advantage of providing an 
objective evaluation (the BIC index) of whether it is 
warranted to use additional parameters in order to im- 
prove a goodness of fit. Most prior analyses of burst 
neuron activity have been based on a first-order model 
of the eye plant mechanics, combined with the hy- 
pothesis that activity in burst neurons creates the burst 
in motoneuron activity, which in turn generates sac- 
cades. In this context one would expect, as reviewed by 
Van Gisbergen et al. (1981), that h(t) is well predicted 
by B(t). Accordingly, prior analyses of burst neuron 
discharge in relation to saccadic eye movements have 
largely focused on either the relationship between peak 
eye velocity and peak discharge frequency or on global 
characteristics of the discharge, such as the relation- 
ships between number of spikes and saccade amplitude 
and between burst duration and saccade duration. 

These relationships do not consider the link on a mo- 
ment to moment basis between the burst and velocity 
profiles. A further major difficulty is the calculation of 
latency, which in prior analyses has not been based on 
functional criteria. For the so-called short-lead burst 
neurons whose firing begins with an abrupt increase 
in frequency, the latency is usually taken as the time 
between the first spike in the burst discharge and the 
start of the movement. For burst neurons that begin 
with a low-frequency prelude, the so-called long-lead 
burst neurons (LLBNs) latency is defined arbitrarily as 
the point in time where the frequency changes from 
low to high (e.g., &udder, 1988). Such definitions 
have limited functional significance as discussed with 
relation to Fig. 2. For example, output neurons of the 
cat’s superior colliculus can begin discharging 25 ms 
or more before a movement, but once the movement 
is underway, an increase in spike frequency leads to 
an acceleration of the eye 10 ms later (Munoz et al., 
1991). Electrical stimulation of the SC has the same 
properties: latency of movement to stimulation onset 
is longer than eye acceleration to a sudden increase in 
stimulus frequency when the evoked movement is un- 
derway (Munoz et al., 1991). The methods discussed 
in this article overcome these problems and define la- 
tency functionally in relation to the average effect of 
every spike in the burst on the movement trajectory. 

One attempt to correlate movement trajectory with 
burst frequency profile was made by Van Gisbergen 
et al. (1981) using phase-plane trajectories. For the 
downstream model they plotted average values of E(t) 
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versus B(t) for saccades of a given size and direction. 
They found that i was predicted best, not by B(t), but 
by B(t) - FE(t) (where b is a constant), indicating 
that both eye velocity and acceleration are determined 
by the burst discharge (see Eq. (2)). 

There are a number of difficulties in the approach 
of Van Gisbergen et al. First, their calculation of a 
neuron’s instantaneous discharge was based on the re- 
ciprocal of the interspike interval. Spike frequency 
calculated in this manner is nonlinear and increasingly 
sensitive to noise at high frequencies of discharge, 
whereas the spike density function rises linearly with 
increasing frequency (Sanderson and Kobler, 1976; 
Richmond et al., 1987). In the Van Gisbergen et al. 
analysis, eye position signals were low-pass filtered 
at 180 Hz; however, the representation of the burst 
neuron firing rate contained much higher frequency 
components. It is possible that their analysis intro- 
duced unwarranted high-frequency signals between in- 
put and output, which enhanced their estimate of the 
effect of eye acceleration. We have avoided this diffi- 
culty by using the linear Parzen analysis with a Gaus- 
sian pulse width, which effectively filtered the neural 
activity at a frequency similar to that used for filter- 
ing the eye movement signals. Second, their graphical 
approach is cumbersome, and although it can be re- 
fined using computer-aided numerical approaches, the 
method does not lend itself to verifying more complex 
models such as the ones with pole terms as in Eq. (5). 
Third, in order to correct for latency in their investiga- 
tions, they determined the time between the onset of 
the burst (defined as when the discharge rate exceeded 
100 spikes per second) and the saccade. As discussed 
above, this method of determining latency is different 
from the dynamic estimate of latency that we have em- 
ployed, and it is possible that their method introduced 
the equivalent of a phase-lead in unit discharge relative 
to eye velocity leading to an overestimate of the eye 
acceleration coefficient. Such an effect is illustrated in 
Fig. 8. The top panel shows the fit and value of the ac- 
celeration coefficient (by) for the optimal latency (td). 
The subsequent two lower panels show the effect on 
the estimate of b2 of decreasing and increasing td by 
5 ms, respectively. 

4.2. Signijicance and Usefulness of the Models 

The algorithm presented here, allows one to objectively 
investigate (1) a burst neuron’s dynamic latency, (2) 
how well a given model predicts a neuron’s discharge 

B(t) = r + b&t-t,) + b,&td) 

200ms 

Figure 8. The firing rate of a cat IBN (S68) is fit with a model 
containing a bias term and eye velocity and acceleration term in 
order to approximate the model proposed by Van Gisbergen et al. 
(1981). When the optimal dynamic latency (rd) was used the esti- 
mated eye acceleration coefficient was quite small (bz = ,006, top 
row); whereas, using a smaller dynamic latency (rd - 5 ms) resulted 
in a significantly larger estimated value for the eye acceleration co- 
efficent (62 = .017, second row). When the dynamic latency was 
chosen to be larger than td, the estimated value for the eye acceler- 
ation coefficent reversed in sign (62 = -.007, third row). Results 
shown are from the same three saccades that are illustrated in Fig. 6. 
Note that the VAF for the entire data set of 40 saccades to which 
each model was fit were 41.8, 47.2, and 45.3 for rows 1 to 3, re- 
spectively. In the top three rows, the shaded area shows actual firing 
frequency, and the solid line the estimated firing. The corresponding 
horizontal eye velocity (2) and position (E) traces for each of the 
three saccades are shown in the bottom two rows. 

pattern, (3) whether increasing the complexity of a 
model is justifiable, as well as (4) the relationship be- 
tween initial conditions and quantities describing the 
saccades’ trajectories. In our estimation of dynamic 
latency we specifically investigated the effect of vary- 
ing the dynamic latency on the ability of two models, 
a simple model (Model 2) and more complex model 
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(Model 7) to predict neural discharges. While the opti- 
mal value estimated for the dynamic latency was con- 
sistent between the two models, the simple model was 
more “latency tuned” (Fig. 5). It is important to note 
that in our analysis we always assumed a fixed delay 
for a given neuron. However, previous studies have 
suggested that latency could vary on a saccade by sac- 
cade basis for a single cell; for example, in the case of 
burst neurons it has been shown that latencies vary with 
saccade direction (Kaneko and Fuchs, 1981). Accord- 
ingly, one future application of these techniques might 
be to probe whether the dynamic latency is in fact a 
fixed value for a given neuron or whether it varies in 
a systematic manner from saccade to saccade or even 
throughout the course of a single saccade. 

In the present study we have also demonstrated that 
the addition of a bias term to an eye velocity-based 
model greatly improved our ability to predict our neu- 
ron’s discharges. In contrast, we found that increases 
in model complexity-which included adding eye 
acceleration, position and nonlinear velocity terms- 
provided only a minor improvement in our ability to 
fit burst neuron firing profiles. However when models 
included a pole term as well as eye velocity, accelera- 
tion, and bias terms, a marked improvement in model 
fit was noted. This class of model was particularly 
adept at describing neuron discharges when the initial 
conditions were estimated as parameters. When initial 
conditions were estimated as parameters (Model 7), we 
found that a strong relationship existed between the es- 
timated initial conditions and peak saccade velocity for 
unit HO721 (illustrated above in Fig. 7). However, a 
similar relationship was not present when initial con- 
ditions were taken directly from the data (Model 6). 
It is interesting to note that in Model 7, the values es- 
timated for the parameter c was xl00 ms for both 
neurons. This parameter is the time constant of the 
decay of the initial conditions, and it is long relative to 
the duration of a saccade. Hence, the initial conditions 
effectively became a bias that varied for each saccade, 
and it is not surprising that the VAFs obtained using 
Models 7 and 8 (the multiple bias fit model) were nearly 
equivalent. 

In the brainstem oculomotor circuitry, there are 
many discrete and interlinked nuclei or zones, each of 
which contains output neurons having more or less the 
same discharge characteristics. This organization has 
facilitated the generation of models in which a neural 
circuit is built using single representative cells, each of 
which is a lumped representation of the properties of 

the output neurons in its class (for the saccadic system 
see for example, Robinson, 1975; Van Gisbergen et 
al., 1981; Scudder, 1988; Galiana and Guitton, 1992). 
A simple version of such a model has been shown in 
Fig. lA, where burst neurons and motor neurons are 
represented by single black boxes. In this model, burst 
neuron firing rate is related simultaneously “upstream” 
to a motor error signal and “downstream” to the dynam- 
ics of the saccade. While in this study we have concen- 
trated on estimating IBN activity based on downstream 
signals, the techniques presented could be similarly 
employed in order to develop a model of burst neuron 
firing rate based on an upstream error signal. We will 
show this in a subsequent paper on our population of 
cells. 

Apart from burst neurons, another input onto mo- 
tor neurons in Fig. 1A is the so-called neural integra- 
tor, which is thought to be a neural network involving 
neurons in prepositus hypoglossi (PH) and vestibular 
nuclei (VN) (Baker et al., 1981; Cheron et al., 1986a, 
1986b; Cheron and Godaux, 1987; Escudero et al., 
1992; Lopez-Barneo et al., 1982; Mettens et al., 1994). 
This black box is hypothesized to receive an eye ve- 
locity signal-a first approximation to burst neuron 
discharge-and to output an eye position signal that 
follows the burst on motoneurons. In reality, the out- 
put of the neural integrator contains signals that also 
contribute to motoneuron discharges during saccades; 
and, as mentioned earlier, it is likely that there are ad- 
ditional inputs to motoneurons, from other saccade- 
related discharges in the VN-PH complex (Cullen et al., 
1993; Scudder and Fuchs, 1992; McFarland and Fuchs, 
1992) and superior colliculus output cells (Grantyn and 
Berthoz, 1985). Due to the presence of these additional 
inputs, it is not clear whether it is valid to assume 
that motoneuron-burst neuron dynamics are negliga- 
ble during saccades. A comprehensive analysis of the 
behavior of the motoneuron pool during saccadic eye 
movements, comparable to that performed on the burst 
neurons in this study, will be necessary in order to ad- 
equately address this issue. 

Three questions arise regarding the burst generator 
organization: (1) How similar are the output charac- 
teristics of each cell group, and can they be lumped? 
(2) What are the delays in each line? (3) What does 
the discharge of one cell group contribute to the dis- 
charge of the target cell group or muscle? We submit 
that the objective evaluation of cell discharges and their 
latencies, as outlined in this article, can provide some 
answers to these questions. 
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Figure 9. Diagram of the implementation of a system simulator for Eqs. (18) or (24) using a digital filter. In this illustration the filter uses 
two zeros and one pole. Observe that the noise y(n) is not fed back into the system simulator. For a multisaccadic system the filter has to be 
reinitialized for each saccade. Time zero makes reference to the filter reinitialization time. 

Appendix 

This appendix describes the methods used to estimate 
the parameters in the model formulated by Eq. (4), 
given eye position for input and firing rate estimate 
as output. Included here are the equations for the one- 
step-ahead predictors used to characterize the response 
of the saccadic system, when many saccades are aver- 
aged together as a population, and the algorithms we 
used for estimating the parameters. The Matlab Sys- 
tem Identification Toolbox (SIT) provided a founda- 
tion for the algorithms we employed. We developed 
specialized algorithms that reinitialized the system re- 
sponse at the beginning of every saccade, and these are 
described in the section on the multisaccade predic- 
tor below. As shown in the main text, the “difference 
approximation” was employed in order to transform 
a continous-time model, such as that in Eq. (6), to a 
discrete-time representation. 

The model structure used in this study, represented 
in terms of the shift operator q-’ is given by 

Bk(n) = q-f*” g(q) -Ek(n) 
f(s) 

+ pk(q) 
--l(n + nf> + rk + y(n), 
“f(4) 

(24) 

where 

f(q) = 1 + .fiq-’ + . ‘. + fnfq-“f (25) 

g(q) = go + glq-’ + ” + g,g-lq-ng+l (26) 

pk(q) = pi + p:q-l + . . . + p:f-lq-nf+l (27) 

and n is within the interval that defines the kth saccade. 

This more general form can be compared with 
Eq. (19) of the main text. The signal I (n + nf) is a 
discrete impulse at time 12 = -nf samples, 4-l is the 
shift operator. The integer nf refers to the number of 
poles, whereas ng refers to the number of elements in 
g (q)-the number of zeros + 1. The factor pk (q) is 
a representation of the initial state of saccade k; for 
nf = 1 (as was the case for the models tested here), the 
factor is a scalar. The term rk indicates that the value 
of r may be estimated separately for each saccade, if 
desired. 

The above model structure is called an output error 
(OE) formulation, in which the noise y(n) only appears 
at the output (Fig. 9). We consider in the Discussion 
the validity of choosing an OE formulation to represent 
burst neuron activity; an advantage of using this type 
of model structure is that it can generate unbiased es- 
timates, even if the noise process is not white, so long 
as it has a zero mean (see Ljung, 1987, p. 75). 

In models containing pole terms (nf 2 I), there are 
initial conditions, and a single bias is assumed common 
to all saccades. If ns is the total number of saccades, 
the total number of parameters in such a model is the 
number of parameters in g(q), f(q), plus the parame- 
ters for the initial states and the bias. 

P=nf+ng+ns*nf+1. (284 

In models in which there is no pole term (nf = 0), the 
bias is either: 

(1) Estimated globally over all saccades, such that the 
number of parameters is the number of parameters 
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in g(q) plus the bias. 

P=ng+l, or (28b) 

(2) Estimated separately for each saccade, such that the 
number of parameters is the number of parameters 
in g(q) plus the bias of each saccade: 

P = ng + ns. WI 

The parameters in Eq. (24) are conveniently de- 
scribe as the column vector 0. 

e = [go,. . . ,gng-l;.fl~---~“fnf; 

p;, . , p;j.-,; 4’ (294 
8 = [go, . . . , g,,-1; f-1’ (29b) 
0 = [go,. . ., g,,-1; rl, . . . ,?I’ (29~) 

for each of the model types described by Eqs. (28a), 
(28b), and (28c), respectively. 

OE Multi-Saccade Predictor 

The Matlab SIT is limited in that it allows building a 
model that fits only a single saccade, and furthermore 
the available modules are limited in that they do not ac- 
count for the influence of a system’s initial conditions 
on the output. Below, we summarize the consider- 
ations required for developing specialized algorithms 
that take account of initial condition when a model is 
fit to a population of saccades. For the case of a single 
saccade, an optimal one-step-ahead predictor of firing 
rate assuming the output error (OE) model in Eq. (24) 
is given by 

,. 
B(n 1 n - 1,13) = q-n”7 ^ i(4) E(n) 

f(4) 
+ F(4) -Z(nfnf)+f, (30) 

f”(4) 

where hat (A) refers to parameter estimates, tilde (-) 
refers to the predictive estimate, and the expression 
i (n 1 n - 1, e^) denotes the predicted firing rate fi (n) 
using the parameters set e^ estimated at time n - 1. 

In the models that contained pole terms, this recur- 
sive algorithm allows a prediction of the expected fir- 
ing rate at the next sample time, given model parame- 
ters and current eye position. These parameters can be 
found by optimizing the fit over all the data points in 

the saccade using the modified OE algorithm. Recall 
that the noise and the initial conditions were added at 
the output side of the filter for such a model (Eq. (19) 
and Fig. 9). 

Since the data we consider are composed of more 
than a single saccade, the predictor was generalized to 
multiple saccades, noting that f(q), g(q), and the bias 
are common to all saccades. To fit a model to more 
than one saccade, a multi-saccade OE one-step-ahead 
predictor is given by 

i(n 1 n - 1, e^) = w,(n, 6) + w,(n, 6), 

where 

(31) 

^ i(4) w,(n, i) = q-Q- 
f(4) 

l?(n) + i 

wE(n, 6) = WI(n + nf + nf) 
f(4) 

and 

is the response of the system assuming a zero initial 
state for the pole, 
is the transient response for saccade number, valid 
only for the length of the kth saccade, 
is the aggregate of the transient responses-that is, 
for any given n, only one term of this sum is non 
zero, 
is the start sample time for the kth saccade. 

The optimal predictor depended on the correct es- 
timation of the delay nd. In the analysis presented 
above (see Results), the value for nd was obtained by 
finding a minimal cost for all estimated parameters, 
including nd, using a simple but accurate model with 
no pole term (that is, 20, = 0 in Eq. (31)). To fit this 
model, dynamic linear regression equations were used 
(see below). Once estimated in this way, nd was subse- 
quently fixed in the multi-saccade predictor. The filter 
g(q)/f(q) was restarted (the previous initial state was 
set to zero) before every saccade at n = n’; - ng + 1, 
where: ng is the number of zeros + 1, and time nf is 
the first sample of the kth saccade. This differs from 
the assumption made in Rey and Galiana (1993), where 
filters were assumed to have a continuous response. 

The residual of the predictor was defined as 

^ ,. 
u(n, 0) = B(n) - B(n 1 n - 1,6’). (32) 
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Note that the predictor was optimal within the stated 
model set if and only if the parameters in Q were known 
exactly-in this (unlikely) case, u(n, e^) = I. The 
equations for the predictor are thus generally subopti- 
ma1 depending on the correct estimate of the parame- 
ters in 8. 

Algorithms Used for Estimating Parameters 

The identification of a system is a two-step process. It 
involves first choosing the type and complexity of the 
model used to describe the system and second applying 
the correct algorithms to fit the parameters of the model. 
Most often, however, one must reassess the choice of 
the model and its complexity after comparing the er- 
rors of different competing models. This section de- 
scribes the algorithms we used to compute parameters 
and to quantify the goodness of fit of the different mod- 
els we proposed. Below are described the algorithms 
employed in the estimation of the two classes of mod- 
els investigated in our analysis: (1) models in which 
there were no pole terms (regression algorithm) and (2) 
models in which there were pole terms (OE algorithm). 

Regression Algorithm 

If the model includes no poles (f(q) = 1) then the 
predictor has no transient term. In this case parame- 
ters are estimated using the dynamic linear regression 
equations derived below. When the value of r is com- 
mon to all saccades, the inputs of the system can be 
conveniently expressed by a N x d column vector. For 
example, consider a data set containing only two sac- 
cades (ki and kz) which start at samples n:, n: and end 
at samples rr.Ei, n& of a sampled record, respectively. 
The input matrix (@(TN)) is given by 

E(ni) ... E(ni -ng+l) 

@(TN) = 
E(nE1) ... E(nj, -ng+ 1) 1 

’ 

where 

1. TN = (1, . . . , N), an array of the relevant samples, 
2. N is the number of elements in TN, 

3. ng is the number of elements in g(q) (= number of 
zeros + l), and 

4. d represents the number of terms in the model. 
For example, in a model containing eye posi- 
tion, velocity, acceleration terms, and a bias term, 
ng=3 and d=4, such that the input matrix 
a(n) = /E(n) E(n - 1) E(n - 2) 11. 

Similarly, the output (II( is given by the N x 1 
column vector, B(1) 

B(TN) = I [ 1 . (34) 

B(N) 

The criterion for estimating the parameters (Q), given 
by the column vector Eq. (29b), is to find the estimate 
that minimizes the following: 

V(e) = IBU’N) - @(TN>QI~ 

= [B(TN) - *(TNPI’[B(TN) - @(TN)@], 

or equivalently, find the e^ such that 

[*‘(TN>+U’N)I~ = *‘G”N>B(TN>. (35) 

Accordingly, the estimate of the parameters that mini- 
mizes the least squares criterion is 

6 = [~‘(TN>~(TN)I-‘~‘(~,)B(TN), (36) 

where, as noted above, the vectors do not define a single 
time interval but the aggregation of multiple saccade 
time intervals, such that all saccades are fit simultane- 
ously. 

In the case that r is estimated separately for each 
saccade, the column of ones in Eq. (33) is expanded 
into a k by N submatrix. For the example data set used 
in Eq. (33), that consisted of two saccades (kl and kz) 
the input matrix @(TN) would be given by 

E(n:) ... E(n; -ng+ 1) 1 0. 
. . . 

@(TN) = 
E(n:,) ... E(na, -ring+ 1) ; b 

E(nf> ... E(n?-ng+l) o 1 . . 
E(nz2) ... E(n$f2-ng+1) b i, 

(37) 

and the parameter column vector by Eq. (29c). 
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OE Algorithm 

Models that include poles (such as Eqs. (4) and (6)) are 
complicated by the addition of transients. A damped 
Gauss-Newton type method based on that described 
by Ljung (1987, p. 284) is used to estimate system 
parameters for OE models. The method requires the 
computation of the gradients of the predictor, which 
are described by Eq. (38). The gradients are computed 
by taking partial derivatives of Eq. (31), with respect 
to each parameter: 

ai 1 

- = q-“d f(4) 2i.i 
-Ek(n - j) WW 

a&n> 1 
-_ 

afj 
-W,(n - j) - A1 

--J%l) 
-w,(n - j) (3Xb) 
f(4) 

al?(n) 1 
-q-= 

-I(n + nf + nf - j) 
f”(4) 

(38~) 

a&n> = 1 
a; . (384 

where n is within the interval that defines the kth 
saccade. 

The gradient matrix is obtained by stacking the gra- 
dients with respect to each parameter (including a 
vector of ones to represent the bias gradient): 

as . ..- i , 1 
(39) 

where A is stacked vertically as ip was in Eq. (33) 
for the analysis of multiple saccades. The parameter 
column vector is defined as above Eq. (29a): 

e = [go,. . . , g,g-1; fl, . ., fnr; PA?. . .3 P;;-1; yl’. 

Damped Gauss-Newton Iterations 

The criterion for determining the parameter estimate is 
to minimize the function 

v(e) = + &3,v - BN>2. (40) 
n=l 

For a given iteration, the time varying residual (error) 
of the predictor is defined as: 

v(n, 6) = B(n) - B(n 1 n - l,e^). (32) 

The error is first determined for a given parameter set, 
and then the parameter estimate is “updated” itera- 
tively. This is done according to 

@(if’) = (g(i) + pp, (41) 

where p is a positive constant that corresponds to the 
iteration step size, and h represents a function that is 
determined based on values of the u(n, i), its gradient, 
and of its Hessian (the second derivative matrix) and 
the index i makes reference to the ith approximation 
(iteration) of the system parameters. 

The general form of the damped Gauss-Newton 
iterative algorithm is 

,$i+l) = Q(‘, + ~(i)[A(i)‘A(i)]-lA!i)‘u(i), (42) 

where 

1. p is the step size 0 < p 5 1 (the algorithm is called 
damped when p < l), 

2. A is the gradient matrix, and 
3. A(‘)‘A@) is the Gauss-Newton approximation of the 

Hessian. 

The algorithm consists of three steps: 

Compute the gradient according to Eqs. (38) and 
(39). 
Compute the new parameters from previous esti- 
mates Eq. (42) using a unity step. 
Halve step size up to 10 times to attempt to reduce 
the error. If error is not reduced or error acceptably 
small exit, otherwise go back to Step 1. 

A measure of robustness is achieved by eliminating 
outliers from the estimated residuals (Ljung, 1987, p. 
401; Devore, 1982; Rey, 1992). 

Initial Conditions Taken from Data 

There are two methods for fitting initial conditions to 
data. The method above includes fitting the transients 
in the optimization process. However, this method is 
calculation intensive and therefore can be very time 
consuming. Another approach taken by Ljung (1987, 
p. 308) is to use the startup data to approximate the ini- 
tial conditions for each saccade interval. This method 
is based on a finite memory implementation of Eq. (24), 
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which can be rewritten as 

f(qPk(4 = g(q>Ek(n> + pkW(n + nf) 

+ f(skk + f(s>y(n>. 

Then 

ykW(n + nf) = f(s>Bk(4 - g(q>Ek(4 

- fWk - f(q)Y(n). 

Thus an estimate of the initial conditions for the kth 
saccade is 

I;kw(n + n-0 = .hwk(n> - Fk> - &X(n), 

(43) 

where the previous estimates, j(q), f”(q), and ik are 
used to estimate pk. 

Using the initial firing rate to estimate the transient 
component reduces the number of parameters from 
P=(nf+ng+ns*nf+1)toP=(nf+ng+1). 
The number of calculations required in this method are 
greatly reduced from that described in the preceding 
sections (in which the transients are fit in the optimiza- 
tion), thereby significantly reducing the time required 
to complete a computation. On the other hand, the burst 
neuron firing rate near the beginning of a burst is most 
likely to depend on the time course of the release of 
inhibitory inputs (Fuchs et al., 1985), and therefore its 
values may be quite noisy; furthermore the influence 
of the first few spikes on the output may be limited 
due to the necessity of depolarizing motoneuron mem- 
branes. In a subsequent report that will included our 
entire data set, we will consider the relative usefulness 
of these two methods regarding the characterization of 
burst neuron spike trains. 
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