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Abstract In everyday life, vestibular sensors are acti-

vated by both self-generated and externally applied head

movements. The ability to distinguish inputs that are a

consequence of our own actions (i.e., active motion) from

those that result from changes in the external world (i.e.,

passive or unexpected motion) is essential for perceptual

stability and accurate motor control. Recent work has made

progress toward understanding how the brain distinguishes

between these two kinds of sensory inputs. We have per-

formed a series of experiments in which single-unit

recordings were made from vestibular afferents and central

neurons in alert macaque monkeys during rotation and

translation. Vestibular afferents showed no differences in

firing variability or sensitivity during active movements

when compared to passive movements. In contrast, the

analyses of neuronal firing rates revealed that neurons at

the first central stage of vestibular processing (i.e., in the

vestibular nuclei) were effectively less sensitive to active

motion. Notably, however, this ability to distinguish

between active and passive motion was not a general fea-

ture of early central processing, but rather was a charac-

teristic of a distinct group of neurons known to contribute

to postural control and spatial orientation. Our most recent

studies have addressed how vestibular and proprioceptive

inputs are integrated in the vestibular cerebellum, a region

likely to be involved in generating an internal model of

self-motion. We propose that this multimodal integration

within the vestibular cerebellum is required for eliminating

self-generated vestibular information from the subsequent

computation of orientation and posture control at the first

central stage of processing.
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Introduction and summary

In this review, we consider the results of recent investi-

gations that have focused on the information encoded by

single neurons during voluntary (i.e., active) head move-

ments. Early investigations involving in vitro, reduced,

and anesthetized preparations provided important insights

into the functional circuitry, intrinsic electrophysiology,

and neuropharmacology of the vestibular nuclei. These

studies revealed a unique feature of the vestibular system,

namely that the neurons at the first central stage of pro-

cessing (i.e., in the vestibular nuclei) are both sensory and

premotor neurons. Notably, neurons in the vestibular

nuclei constitute the middle link of the three-neuron ves-

tibulo-ocular reflex (VOR) pathway, which produces eye

movements to stabilize gaze during self-motion (Fig. 1a;

VOR pathway). Likewise, the vestibular nuclei provide

the middle link of the pathway linking the labyrinth and

the spinal cord, which mediates the vestibulo-spinal

reflexes required for balance and posture (Fig. 1a; ves-

tibulo-spinal pathway). As a result, subsequent in vivo

studies focused principally on understanding the responses

of neurons within the vestibular nuclei in relation to the

sensorimotor transformations that are required for reflex

generation, by applying passive vestibular stimulation

(i.e., head motion input) and recording the resulting neu-

ronal and behavioral responses.
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However, a second essential feature of the vestibular

system when compared to other sensory systems is that

information processing is strongly multisensory and mul-

timodal at the first stage of central processing (Fig. 1a;

inputs; reviewed in Cullen and Roy 2004). The vestibular

nuclei receive inputs from a wide range of cortical, cere-

bellar, and other brainstem structures in addition to direct

inputs from the vestibular afferents. The integration of

vestibular information and extra-vestibular cues is essential

for higher-order vestibular functions, such as self-motion

perception and spatial orientation (Fig. 1a; ascending ves-

tibular pathways). Moreover, recent studies in alert animals

have emphasized the importance of extra-vestibular signals

in shaping the ‘simple’ sensory-motor transformations that

mediate vestibulo-ocular and vestibulo-spinal reflexes.

In contrast to the long history of characterizing vestib-

ular processing in conditions where the head is restrained

and vestibular stimuli are passively applied, more recent

investigations have now begun to examine the responses of

single neurons during active head movements. Here, we

review the results of studies examining the differential

processing of active versus passive head motion, with a

focus on the role of extra-vestibular signals and underlying

mechanisms. First, we review the literature showing that

neuronal responses to self-generated motion are selectively

suppressed for a distinct class of neurons in the vestibular

nuclei: vestibular-only (VO) neurons, which have

descending projections to vestibulo-spinal pathways and

ascending projections to the thalamus, such that they

contribute to vestibulo-spinal reflexes and self-motion
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Fig. 1 Methods: a Schematic of the central vestibular pathway. The

vestibular sensors located in the inner ear send information via the 8th

nerve to neurons in the vestibular nuclei. Specifically, vestibular-only

(VO) neurons project to higher-order centers as well as the spinal

cord, whereas position-vestibular-pause (PVP) and floccular target

neurons (FTN) project to ocular motoneurons. b During experiments,

monkeys were seated on a turntable, which could be translated or

rotated. c–d Neurons were recorded during active and passive head-

on-body rotations (c) and translations (d), as well as passive whole-

body rotations (c) and translations (d). Examples of velocity and

acceleration profiles during rotation and translation, respectively, are

shown in the bottom panel. Blue lines represent passive motion and

red lines represent active motion
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perception. In contrast, the responses of primary vestibular

afferents and other classes of vestibular nuclei neurons are

similarly robust during active and passive motion. Notably,

we discuss the implications of our finding that the VOR

interneurons (i.e., position-vestibular-pause (PVP) neu-

rons) of the vestibular nuclei do not discriminate between

passive and self-generated motion at the first central stage

of processing. We then further show that the suppression of

‘‘vestibular-only’’ neurons responses to self-produced ves-

tibular stimulation occurs only if the actual movement

matches the intended one. Notably, the brain only gener-

ates a cancellation signal when the activation of proprio-

ceptors matches the motor-generated expectation,

consistent with an internal model of the sensory conse-

quences of active motion. Finally, we examine the mech-

anisms that underlie this comparison. The results of recent

experiments, focused on the integration of vestibular and

extra-vestibular information in the vestibular cerebellum,

yield insights into the origins of the suppression of self-

generated vestibular stimulation. Our recent findings pro-

vide new evidence that the multimodal integration within

the vestibular cerebellum provides the inputs required to

update an internal model of active self-motion, which in

turn is used to eliminate self-movements from the sub-

sequent computation of orientation and posture control.

General approach

Macaque monkeys were prepared for chronic extracellular

recording in the vestibular nerve and nuclei using aseptic

surgical techniques similar to those previously described

by Roy and Cullen (2001, 2004). All experimental proto-

cols were approved by the McGill University Animal Care

Committee and were in compliance with the guidelines of

the Canadian Council on Animal Care. Monkeys were

trained to follow a target light (HeNe laser) to generate

pursuit and gaze shift movements. During the experiments,

the monkey sat comfortably in a primate chair, placed on a

servo-controlled vestibular turntable. Neuronal activity was

initially recorded in the head-restrained condition during

voluntary eye movements and passive whole-body rotation

or translation (Fig. 1b). After a neuron was fully charac-

terized in the head-restrained condition, the monkey’s head

was slowly and carefully released so that the neuron’s

activity could be characterized during active as well as

passive movements of the head relative to the body (Fig. 1c

and d).

Extracellular single-unit activity from afferent and ves-

tibular-only neurons, horizontal gaze, and head position,

target position, and vestibular turntable velocity were

recorded and stored on DAT tape for playback. Action

potentials were first discriminated during playback using a

windowing circuit (BAK), and then spike density was

calculated by convolving a Gaussian function with the

spike train (SD of 10 ms). Subsequent analysis was per-

formed using custom algorithms.

The differential processing of active and passive

motion: conceptual frameworks

The ability to distinguish sensory inputs that are a conse-

quence of our own actions from those that result from

changes in the external world is essential for perceptual

stability and accurate motor control. This distinction is

particularly important in the vestibular system because of

the short latency vestibular reflexes needed to stabilize

gaze and head in space. For example, while vestibulo-

spinal reflexes are essential for providing robust postural

responses to unexpected vestibular stimuli, they can be

counter-productive when the goal is to make active

movements that result in head motion. It is thus theoreti-

cally advantageous to distinguish between vestibular inputs

that arise as a result of active self-motion and those that are

the result of unexpected events in external world.

Vestibular canal and otolith afferents

do not differentially encode active and passive head

motion

Evidence for the proposal that the efferent vestibular sys-

tem has an important role in the differential processing of

active and passive movements came from several con-

verging lines of research. First, the afferents of the ves-

tibular periphery receive bilateral efferent projections

(Gacek and Lyon 1974; Dickman and Correia 1993; Myers

et al. 1997; Plotnik et al. 2002), and studies in model

systems (goldfish, Hartmann and Klinke 1980; frog, Caston

and Bricout-Berthout 1984; toadfish, Boyle and Highstein

1990a) had suggested that vestibular efferent fibers carry

extra-vestibular signals (e.g., somatosensory, propriocep-

tive or efference copy signals), which could serve to

modulate afferent responses during voluntary movements

(Klinke 1970; Goldberg and Fernandez 1980). Consistent

with this idea, activation of the efferent vestibular system

had been further shown to produce an increase in afferent

resting discharge rate (Goldberg and Fernandez 1980;

Boyle and Highstein 1990b; Plotnik et al. 2002, 2005;

Marlinski et al. 2004; Sadeghi et al. 2009) and a reduction

in afferent response sensitivity (Goldberg and Fernandez

1980). Finally, studies of the toadfish periphery had

reported a comparable increase in the background dis-

charge rate and a decrease in the sensitivity of afferents

preceding the generation of an escape response (Highstein
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and Baker 1985; Boyle and Highstein 1990b; Highstein

1991, 1992). Thus, taken together, these results have been

used to support the proposal that during active head

movements, activation of the efferent system is used to

decrease the probability of inhibitory cutoff or excitatory

saturation of afferents, thereby effectively increasing the

dynamic range available for unexpected vestibular input

(Goldberg and Fernandez 1980).

However, more recent studies by our laboratory have

shown that the vestibular afferents in alert behaving mon-

keys do not differentially encode active and passive head

motion. Neuronal responses were compared during passive

and active head-on-body translations or rotations in order to

assess the relative influence of neck proprioceptive and

motor-related signals on head motion coding in vestibular

afferents. Figure 2 shows the activity of example regular and

irregular semicircular canal (A) and otolith (B) afferents in

response to head rotation and translation, respectively. The

vestibular sensitivities of both regular and irregular afferents

during active motion were comparable to those recorded

during passive movements for both types of motion (Cullen

and Minor 2002; Sadeghi et al. 2007a; Jamali et al. 2009).

Furthermore, while previous studies have reported that the

effects of activation of the efferents is greatest for irregularly

discharging afferents in primates (Goldberg and Fernandez

1980; Sadeghi et al. 2009), we found that a given afferent’s

response was comparable in active and passive conditions

regardless of the regularity of its discharge or resting rate.

Thus, the results of these more recent experiments do not

support the proposal that the efferent vestibular system plays

an important role in the differential processing of active and

passive movements; both regular and irregular afferent

responses were comparable during self-generated and pas-

sive head-on-body movements. Accordingly, in primates,

vestibular inputs that are self-generated versus those that are

the result of passive motion are similarly encoded by the

firing rates of primary sensory afferents.

The response of vestibular-only neurons

of the vestibular nuclei are cancelled during active

head motion

The processing of vestibular information at the first central

synapse had been studied by recording from neurons in the

vestibular nuclei of head-restrained animals, during passive

stimulation protocols that resulted in movement of the head

and body together relative to space. This approach has been

useful for categorizing neurons into different subgroups

including position-vestibular-pause neurons, which medi-

ate the VOR, and vestibular-only (or non-eye movement

neurons), which contribute to vestibulo-spinal pathways. In

addition to their vestibular inputs, however, neurons in the

vestibular nuclei also receive convergent information from

the areas carrying proprioceptive (Boyle and Pompeiano

1981; Anastasopoulos and Mergner 1982; Wilson et al.

1990; Wilson 1991) and efference copy signals, as well as

projections from higher-order cortical areas (for review,

see Fukushima 1997). These extra-vestibular inputs could

be used to discriminate between self-motion that is the

result of passive stimulation and that is the result of active

motion. Accordingly, more recently, investigators have

quantified the information encoded by these different

neuron subgroups, comprising the first central stage of

vestibular processing, to examine whether each subclass

differentially encodes vestibular inputs arising from self-

generated versus externally applied head motion.

Indeed, the results of studies in our laboratory as well as

others have shown that the responses of a particular group

of neurons in the vestibular nuclei—the vestibular-only

neurons—are dramatically attenuated during active move-

ments (compare panels 3a, b) (McCrea et al. 1999; Roy and

Cullen 2001). The attenuation of vestibular modulation

during active motion is specific to this class of neurons,

which project to the spinal cord and are thought to mediate,

at least in part, vestibulo-spinal reflexes, but do not con-

tribute to the direct VOR pathways (Wilson et al. 1990;

Boyle et al. 1996; Gdowski and McCrea 1999). Notably,

vestibular-only neurons also continue to respond selec-

tively to passively applied head motion when a monkey

generates active head-on-body movements (Fig. 3c, see

also Roy and Cullen 2001). The ability of these neurons to

selectively respond to passive vestibular stimuli during

concurrent active and passive motion is likely to underlie

our ability to reflexively respond to changes in vestibular

input that the brain does not expect. For example, in order

to recover from tripping over an obstacle while walking or

running, it is vital that postural reflexes generate robust

responses to the unexpected component of head motion.

The VOR interneurons (i.e., PVP neurons)

of the vestibular nuclei do not differentially encode

active and passive head motion

In contrast to VO neurons, we have demonstrated that the

position-vestibular-pause (PVP) neurons of the vestibular

nuclei, which mediate the vestibulo-ocular reflex, do not

differentially encode active and passive motion (Roy and

Cullen 1998, 2002). These neurons continue to reliably

encode head velocity during either active or passive head

motion, when stable gaze is required, again consistent with

their role in generating the VOR. Furthermore, by char-

acterizing neuronal responses during a variety of experi-

mental conditions, we were able to specifically characterize

the multimodal processing that occurs in PVP neurons. We
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found that neither neck proprioceptive inputs, an efference

copy of neck motor commands, nor the monkey’s knowl-

edge of its self-motion influence the activity of PVP

neurons per se. Instead, an efference copy of the saccadic

system’s motor command to move the eye (i.e., redirect

gaze) is responsible for the behaviorally dependent
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modulation of position-vestibular-pause neurons (and by

extension for modulation of the status of the VOR)

reported during gaze redirection (see for example, Cullen

and Roy 2004). As a result, the efficacy of the VOR

pathway is suppressed whenever the animal’s current

behavioral goal is to redirect gaze. For example, the VOR

is counterproductive during rapid eye-head gaze shifts,

since it would generate an eye movement command in the

direction opposite to the intended change in gaze.

Accordingly, the inhibitory input from the saccadic path-

ways (i.e., a gaze efference copy) produces a pause in the

responses of PVP neurons resulting in the suppression of

the VOR’s efficacy during rapid gaze redirection.

Summary of primary afferent and central neuron

response sensitivity during active vs. passive motion

Thus, in summary unlike primary canal or otolith afferents,

central neurons can preferentially encode passive versus

active head motion. Importantly, however, this was true only

for a subclass class of neurons at the first central stage of

processing, namely VO neurons, which have descending

projections to vestibulo-spinal pathways and ascending pro-

jections to the thalamus, and contribute to vestibulo-spinal

reflexes and the self-motion perception. In contrast, when the

goal was to stabilize gaze, VOR interneurons, like primary

afferents similarly encode motion in both conditions. Results

from the population analysis of the different classes of pri-

mary afferents and central neurons are plotted in Fig. 3d. On

average, the vestibular-only neuron population response was

unique in that it was profoundly (70%) reduced during active

when compared to passive head movements. In contrast,

population responses of VOR interneurons (i.e., position-

vestibular-pause neurons (PVPs)), primary canal, and otolith

afferents were unchanged. Notably, this difference in the

coding strategy of the two central neuron groups is consistent

with their different functional roles; the responses of neurons

that comprise vestibulo-spinal pathways are suppressed when

the goal is to generate an active head movements, whereas the

responses of VOR interneurons remain robust when the goal

is to stabilize gaze (i.e., regardless of whether the head

movement is active or passive). Instead, these neurons process

vestibular information in a behaviorally dependent manner.

The spike train regularity of vestibular afferent

and vestibular nuclei neurons is unchanged

during active head motion

As summarized above (Figs. 2, 3d), our previous analyses

of neuronal firing rates did not successfully provide any

compelling evidence for the existence of selective efferent-

mediated affects on afferent responses during active versus

passive movements in alert primates (Cullen and Minor

2002; Jamali et al. 2009). A recent study, however, has

proposed that activation of the efferent system could

potentially change the firing regularity, as well as excit-

ability, of afferent fibers (Kalluri et al. 2010). In particular,

since differences in channels across afferents are linked to

differences in the regularity of spike timing, it follows that

the effect of efferent synapse acetylcholine release (Gold-

berg and Fernandez 1980; Perachio and Kevetter 1989)

could modulate channels present in the calyceal afferents to

alter discharge regularity. In turn, a substantial effect on

regularity could alter the information carried by the affer-

ent, since more regular afferents encode information in a

spike timing as well as rate-based code (Sadeghi et al.

2007b). Thus, to explore this possibility further, we com-

pared the firing rate variability of both primary afferent and

vestibular-only neurons in the vestibular nuclei before,

during, and after active head movements.

The results of this analysis are shown for an example

afferent and central neuron in Fig. 4 (left panel and right

panel, respectively). Notably, we found that discharge

regularity was not significantly altered during active head

movements at either of these sequential stages of pro-

cessing. First, we estimated each afferent’s variability by

computing the residual of its modulation relative to a

simple model of its response to head motion:

bfr tð Þ ¼ bþ Sv-vest H
�

tð Þ þ Sa-vest H
��

tð Þ ð1Þ

Where bfr is the estimated firing rate, Sv-vest and Sa-vest

are coefficients representing sensitivities to head velocity

and acceleration, and b is a bias term. Specifically, the

residual was computed by taking the difference of the actual

firing rate (fr), and the estimate ( bfr) provided by the best fit

to Eq. 1. Analysis of the central neuron, which was more

straightforward since the neuron was not responsive to

active head movements, similarly showed that their

response variability was not altered during active head

movements. The histograms shown in Fig. 4 D1, D2

summarize the average standard deviations of the

residuals before, during (3 epochs corresponding to early,

middle, and late stages), and after active head motion. In

addition, we also compared the average coefficient of

variation (CV) at each interval for a population of central

neurons that were unresponsive to active head motion.

Overall, we found that there was no significant change in

either the variability of the residual firing rate or CV when

compared before, during, and active head movement,

(paired t test, p [ 0.62). Thus, our analysis of both

primary afferents and central neurons in the vestibular

nuclei suggests that the efferent system does not play a role

in the differential processing of active and passive motion;
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we observed neither a change in average sensitivities (i.e.,

neuronal rate coding, Fig. 2) nor differences in spike-time

variability (i.e., temporal coding, Fig. 4).

An internal model of the sensory consequences of active

motion is used for suppression

The differential encoding of active and passive movements

observed in the firing rates of second-order vestibular nuclei

neurons is consistent with Von Holst and Mittelstaedt’s

(1950) original proposal that the brain compares an ‘‘effer-

ence copy’’ of the motor command generated during vol-

untary movements with an incoming sensory input to

distinguish between exafference and reafference. As detailed

above, the suppression of vestibular reafference is specific to

a class of second-order neurons, which had been classically

termed vestibular-only (or alternatively non-eye movement)

neurons on the basis of their lack of eye movement–related

responses in head-restrained animals (e.g., Fuchs and Kimm

1975; Keller and Daniels 1975; Lisberger and Miles 1980;

Chubb et al. 1984; Tomlinson and Robinson 1984; Scudder

and Fuchs 1992; Cullen and McCrea 1993). Thus, the results

of head unrestrained studies have shown that this nomen-

clature is misleading given that these neurons reliably

encode passively applied head velocity (i.e., vestibular ex-

afference) but not active head velocity. Accordingly, we

propose that nomenclature such as ‘vestibular exafference

selective’ would provide a more accurate description of the

responses of this group of neurons.

How does the brain distinguish between active and

passive head movements at the first stage of central pro-

cessing in the vestibular system? Theoretically, the exis-

tence of extensive multimodal convergence of other

sensory and motor signals with vestibular information in

the vestibular nuclei provides several possible solutions. In

particular, it is important to note that neuronal responses

were compared in two very different conditions: (a) during

self-generated head movements that were produced by

activation of the neck musculature (i.e., voluntary head-on-

body movements) and (b) during passive movements that

were generated by whole-body rotations (i.e., the tradi-

tional stimulus for quantifying vestibular responses).

Accordingly, our more recent studies in alert rhesus
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monkeys have focused on the implications of the difference

between the extra-vestibular cues that were present in these

two conditions. First, because neck proprioceptors as well

as vestibular receptors are stimulated during active head-

on-body movements, we began by examining whether this

additional information might alter neuronal responses

during active head-on-body movements. However, while

the neck-related inputs conveyed to the vestibular nuclei

via disynaptic pathways (Sato et al. 1997) influence the

vestibular nuclei neuron activity in decerebrate animals

(Boyle and Pompeiano 1981; Anastasopoulos and Mergner

1982; Wilson et al. 1990), vestibular nuclei neurons are

unresponsive to passive activation of neck proprioceptors

in alert rhesus monkeys (Roy and Cullen 2003, 2004).

Similarly, this same series of studies demonstrated that

neurons do not respond to the generation of a neck motor

command to move the head when the head is experimen-

tally restrained such that it cannot move (as verified by the

measuring neck torque in head-restrained monkeys). Thus,

neither neck motor efference copy nor proprioception cues

alone are sufficient to account for the elimination of neu-

ronal sensitivity to active head rotation.

The results described in the paragraph above appear to

suggest that signals related to neck motor commands do not

play an important role in mediating the reduction in vestib-

ular-only neuron responses during active motion. However,

although the monkey generated neck motor commands dur-

ing the experiments, the movement of the head relative to the

neck was experimentally constrained to prevent the actual

realization of the intended head movement. Accordingly, the

question arises whether an inhibitory neck proprioceptive

signal might be gated in only when the actual activation of

neck proprioceptors matches an internal model of the sensory

consequence of head motion. By experimentally controlling

the correspondence between intended and actual head

movement, it was demonstrated that indeed a cancellation

signal is generated when the activation of neck proprioceptors

matches the motor-generated expectation (Roy and Cullen

2004). Accordingly, we have proposed that an internal model

of the sensory consequences of active head motion is used to

selectively suppress reafference at the vestibular nuclei level.

The schematic in Fig. 5 shows our current working model of

the neural mechanisms in the vestibular nuclei that underlie

the ability to distinguish self-generated from passively

applied head motion.

Multimodal integration in the vestibular cerebellum

and the origins of the suppression of self-generated

vestibular stimulation

The cerebellum is thought to integrate convergent infor-

mation encoding goals, motor commands, and movement

feedback signals to compute the correspondence between

the predicted and actual sensory outcome of a motor

command. Consistent with this proposal, prior studies in

the electric fish have shown that its cerebellum-like elec-

trosensory lobes play a key role in the attenuation of sen-

sory responses to self-generated electrical stimulation (Bell

et al. 1999; Mohr et al. 2003; Sawtell et al. 2007). Fur-

thermore, fMRI studies in humans have similarly provided

evidence that the cerebellum plays a similar role in the

suppression of tactile stimulation during self-produced

‘tickle’ (Blakemore et al. 1998; 1999a; b).

To date, however, the site where multimodal signals

combine in order to cancel vestibular reafference has not

yet been identified. Our previous results suggest that the

site responsible for predicting the sensory consequences of

active motion should logically be characterized by three

elements, namely, neurons should receive (1) propriocep-

tive information, (2) a copy of the motor command, or

alternatively an estimate of the expected sensory feedback

that results from self-generated movement, as well as (3)

vestibular input. For this reason we predicted that the

rostral fastigial nucleus (FN), the most medial of the deep

cerebellar nuclei, should be an excellent candidate site for

the generation of a cancellation signal during active head-

on-body movements. This nucleus receives descending

projections from the anterior vermis (Batton et al. 1977;

Yamada and Noda 1987), a region of the cerebellum that

receives direct projections from cortical structures involved

motor commandmuscle

reafference

sensor

exafference+
+ +

-

internal model

proprioception

efference 
copy

VN

match

exafference

estimate of
sensory
feedback

Cancellation
 signal

exafference

Fig. 5 Proposed mechanisms for the attenuation of vestibular

reafference. During the active head movements, an efference copy

is processed by an internal model, which computes the expected

sensory consequence of the motor command. Neck proprioceptive

inputs are compared with this estimate of reafference in a putative

matching center in the cerebellum. If these signals match, a

cancellation signal is sent to vestibular-only neurons in the vestibular

nuclei
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in producing head and neck movement (Alstermark et al.

1992a, b). In addition, it receives ascending neck propri-

oceptive input via the central cervical nucleus and the

external cuneate nucleus and vestibular input from the

vestibular nuclei (Voogd et al. 1996). In turn, the rostral FN

projects to the vestibular nuclei and spinal cord, and lesion

studies have confirmed its important contribution to the

control of voluntary head movements as well as posture

(Thach et al. 1992; Kurzan et al. 1993; Pélisson et al.

1998).

To explicitly test whether neurons in the rostral FN

encode and integrate multimodal information in manner

consistent with that required for the cancellation of ves-

tibular reafference, we recently completed a series of sin-

gle-unit recording studies. Notably, we found, for the first

time, that single neurons dynamically encode both propri-

oceptive and vestibular information during passive stimu-

lation conditions (Brooks and Cullen 2009). In particular,

we have established that the convergence of vestibular and

proprioceptive inputs provides the required foundation for
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position. (f) Average tuning curves for bimodal and unimodal neurons
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computing an internal estimate of body motion in space.

Notably, neurons encoding body motion are characterized

by the convergence of vestibular and proprioceptive sig-

nals. In contrast, neurons only sensitive to vestibular inputs

encode head motion like those in the vestibular nerve and

nuclei (see Roy and Cullen 2001, 2004; Cullen and Minor

2002; Jamali et al. 2009). Overall, we found that approx-

imately half of the neurons in the rostral FN selectively

encode passive body motion when the head and body are

moved separately, while the other half encodes head

motion (Brooks and Cullen 2009). This convergence of

vestibular and proprioceptive inputs most likely underlies

the transformation of vestibular signals from a head to a

body reference frame in the rostral FN (Kleine et al. 2004;

Shaikh et al. 2004). Indeed, our recent studies have further

revealed similar tuning of proprioceptive and vestibular

responses in relation to changes in head-on-body position

and thus provide insight into the specific computation that

accomplishes this transformation (Fig. 6d–f, Brooks and

Cullen 2009). Importantly, to date, our experiments in the

rostral FN have exclusively tested neuronal responses to

passively applied movements. Our current experiments are

now focused on understanding how these same neurons

respond when proprioceptive and vestibular inputs are

stimulated as a result of active self-motion. In particular,

these studies will allow us to test whether this multimodal

integration within this region of the vestibular cerebellum

underlies the brain’s computation of exafference during

self-motion.

Conclusions

Neurons at the first central stage of vestibular processing in

the vestibular nuclei can distinguish between self-gener-

ated and passive movements. Notably, during active

movements, a cancellation signal is sent to a distinct group

of neurons termed vestibular-only neurons when the acti-

vation of proprioceptors matches the motor-generated

expectation. The cancellation signal predicts the vestibular

activation which is the consequence of a motor command

to effectively eliminate self-generated movements from

subsequent computation of orientation and postural control.

However, the ability to distinguish actively generated and

passive stimuli is not a general feature of all early central

vestibular processing; central vestibular neurons process

vestibular information in a manner that is consistent with

their functional role. In particular, central neurons con-

trolling gaze, rather than posture and spatial orientation

(i.e., PVP neurons), do not differentially encode active and

passive head motion. Instead, these neurons process ves-

tibular information in a manner that depends on current

gaze strategy: their responses are only suppressed when the

animal’s goal is to redirected gaze. This is logical since

these neurons should continue to generate a VOR when the

goal is to stabilize gaze—regardless of whether head

motion is active or passive. Thus, for example, while the

activity of PVP neurons is suppressed during the initial

phase of eye-head gaze shifts (i.e., when gaze is redi-

rected), it (and thus the VOR) is again robust toward the

end of the gaze shift when the eye is on target but the head

is still catching up (Roy and Cullen 1998, 2002). Our most

recent studies have furthered this line of research by

identifying a site of where multimodal signals are likely

combined in order to cancel vestibular reafference. Neu-

rons in the cerebellar nuclei integrate extra-vestibular and

vestibular inputs, and as a result encode information that

could potentially contribute to the ability of human subjects

to accurately perceive rotation of the body independently

of rotation of the head during everyday activities (Mergner

et al. 1981, 1983, 1991). To date, however, it is currently

unknown whether single neurons in the vestibular cere-

bellum differentially encode body and head motion when

movements are the result of voluntary behavior (i.e., re-

afference) versus passively applied stimulation (i.e., exaf-

ference) in a manner consistent with the cancellation of

vestibular reafference. Further experiments will be needed

in order to establish whether this region plays a role in

reafference cancellation.
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