Why do I still feel like I’m moving hours after I go skiing or spend time on a boat?

“After returning from a cruise or sailing trip, or even after a day of skiing, it is very common to experience an illusory motion after-effect known as ‘mal de debarquement,’” said Dr. Kathleen Cullen, a professor of biomedical engineering at Johns Hopkins University and adjunct professor at McGill University’s department of physiology, who has written on the subject.

“The term, which comes from French, literally translates to ‘sickness of disembarking’ and originally referred to the movement after-effect reported by seamen after returning home.

“Mal de debarquement completely subsides for most people within a day or so. However, for a minority of individuals, and more frequently in women, it can persist for weeks or even years and be quite debilitating.

“While the causes of this after-effect phenomenon are not fully understood, it is believed that a region of the brain called the cerebellum plays a vital role,” she said. Recent research shows that the cerebellum computes an estimate of the sensory input it should be getting from our senses — including balance — while we’re in motion, she said.

“Notably, over time, the cerebellum appears to build internal models of rhythmic motion such as that experienced on a boat or while skiing down a slope. Interestingly, this internal model remains at least partially intact once we are back on land or driving home from the ski slope. As a result, we can continue to experience illusory motion reminiscent of our past experiences.

“Fortunately, for most people, the cerebellum quickly updates its internal models based on the sensory inflow experienced in the new environment so that the motion after-effect quickly disappears.

“In rare individuals, however, where this illusory motion after-effect persists, there is no single successful treatment approach. Standard treatments involved motion sickness drugs such as scopolamine. More recent treatments include rehabilitation manoeuvres in which the head is slowly rolled from side to side at the same frequency as the subject’s symptomatic rocking, swaying or bobbing to recalibrate the brain’s internal model and reduce the disorienting symptoms.”