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Abstract We have previously reported that central neurons mediating vestibulo-spinal reflexes

and self-motion perception optimally encode natural self-motion (Mitchell et al., 2018). Importantly

however, the vestibular nuclei also comprise other neuronal classes that mediate essential functions

such as the vestibulo-ocular reflex (VOR) and its adaptation. Here we show that heterogeneities in

resting discharge variability mediate a trade-off between faithful encoding and optimal coding via

temporal whitening. Specifically, neurons displaying lower variability did not whiten naturalistic self-

motion but instead faithfully represented the stimulus’ detailed time course, while neurons

displaying higher variability displayed temporal whitening. Using a well-established model of VOR

pathways, we demonstrate that faithful stimulus encoding is necessary to generate the

compensatory eye movements found experimentally during naturalistic self-motion. Our findings

suggest a novel functional role for variability toward establishing different coding strategies: (1)

faithful stimulus encoding for generating the VOR; (2) optimized coding via temporal whitening for

other vestibular functions.

Introduction
Our previous study was the first to investigate how neurons within the first central stage of vestibular

processing in macaque monkeys respond to natural self-motion (Mitchell et al., 2018). Specifically,

we focused on a class of neurons within the vestibular nuclei, vestibular-only (VO) neurons, that

mediate vestibulo-spinal reflexes as well as self-motion perception (Abzug et al., 1974;

Shinoda et al., 1988; Gdowski and McCrea, 1999; Meng et al., 2007; Marlinski and McCrea,

2009). Our results revealed that VO neurons optimally encoded naturalistic self-motion stimuli

through temporal whitening (i.e., the spike train power spectrum is independent of temporal fre-

quency and thus "white") because both neuronal variability and tuning were matched to effectively

complement natural stimulus statistics (Carriot et al., 2014; Carriot et al., 2017; Mitchell et al.,

2018). Our previous study was however limited since we only considered a single class of neurons

within the vestibular nuclei and further did not take into account the effects of neural

heterogeneities.

Importantly, while VO neurons mediate vestibulo-spinal reflexes as well as self-motion perception

as mentioned above, two other distinct neuronal classes instead mediate the vestibulo-ocular reflex

(VOR) and its adaptation. Specifically, position-vestibular-pause (PVP) neurons make the primary con-

tribution to the VOR, whereas eye-head (EH) neurons receive cerebellar input and are required for
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VOR adaptation and motor learning (see Cullen, 2012 for review) (Lisberger, 1984; Lis-

berger, 1994; Lisberger et al., 1994; Ramachandran and Lisberger, 2008). The VOR generates

robust compensatory eye movements in response to head movements encountered during everyday

life in order to stabilize gaze (Goldberg et al., 2012) and is an attractive model for understanding

how information transmitted by sensory neurons is actually decoded downstream to generate behav-

ior. Importantly, the VOR requires that information as to the detailed timecourse of head movements

be contained in the spiking activities of sensory neurons and transmitted to motor areas. However,

to date, the effects of neural heterogeneities, particularly in terms of variability, within and across all

three vestibular neuronal classes (i.e., PVP, EH, and VO) on coding of naturalistic self-motion remains

unknown.

Accordingly, here we investigated how differences in variability within and across distinct central

vestibular neuronal classes impact coding strategy during naturalistic self-motion. We first establish

that, in the absence of stimulation, all three neural classes displayed a similar wide range of variabil-

ity as quantified by the coefficient of variation (CV) of the resting discharge. To next determine

whether neurons optimally encoded naturalistic self-motion stimuli, we computed their response

power spectra as well as the mutual information. Specifically, we tested whether the response power

spectrum was independent of frequency or, equivalently, whether the mutual information was close

to its maximum possible value for a given level of variability as predicted by theory (Shannon, 1948;

Rieke et al., 1996). We found that, within each class, neurons displaying high resting discharge vari-

ability displayed temporal whitening. In contrast, neurons displaying lower resting discharge variabil-

ity did not display temporal whitening but instead faithfully encoded the stimulus’s detailed

timecourse as assessed by linear stimulus reconstruction. Interestingly, our results show that faithful

encoding was greatest for PVP neurons, suggesting that this coding strategy is necessary to gener-

ate the compensatory VOR eye movements observed during naturalistic self-motion stimulation.

Using a well-established model of VOR pathways, we validated this prediction. Our findings suggest

a novel functional role for variability toward establishing different coding strategies as required for

different vestibular functions.

Results
In order to investigate the effects of differences in variability on coding strategy for naturalistic self-

motion by central vestibular neurons, single-unit recordings were made from PVP (N = 20), EH

(N = 15), and VO (N = 17) neurons within the vestibular nuclei of macaque monkeys (Figure 1A,

top). PVP, EH, and VO neurons were identified using standard methodology (reviewed in

Cullen, 2012) that characterized a given neuron’s responses to rotational vestibular stimulation in

the yaw axis (1 Hz, 40˚/s peak velocity) and eye movements (Figure 1—figure supplement 1; see

Materials and methods). Specifically, each neuron’s sensitivity to sinusoidal vestibular stimulation

was recorded in the dark and while monkeys cancelled their VOR by fixating a target that moved

with the vestibular turntable (VOR cancellation). Neuronal sensitivity to eye movements was assessed

during steady fixation, saccades, and smooth pursuit (see Materials and methods). The vestibular

and eye movement sensitivities of PVP, EH, and VO neurons in our dataset are shown in Figure 1—

figure supplement 2 and agreed with previously published values (Roy and Cullen, 2002; Roy and

Cullen, 2003; Massot et al., 2011; Mitchell et al., 2018). In particular, we note that PVP and EH

neurons can be distinguished based on their differential sensitivities to eye and head movements

during smooth pursuit and VOR cancellation, respectively (Figure 1—figure supplement 1).

During stimulation, there is a component of the variability in the neural response that can be

explained by the stimulus and a component that cannot (Stein et al., 2005). The latter component

contributes to what is known as trial-to-trial variability in the neural response to repeated presenta-

tions of a given stimulus. Such trial-to-trial variability is largely determined by the variability of the

resting discharge for vestibular neurons (Sadeghi et al., 2007; Massot et al., 2011; Jamali et al.,

2013; Mitchell et al., 2018). This is because, in order to be detected, head movements must suffi-

ciently perturb the resting discharge. As such, it is much easier to detect stimulation when the rest-

ing discharge is more regular (i.e., less variability) than when it is more irregular (i.e., more variability)

(reviewed in Cullen, 2012).
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Figure 1. Central vestibular neurons display a wide range of variability in the absence of stimulation. (A) Afferents from the vestibular periphery project

to three classes of neurons found in the vestibular nuclei. Position-vestibular-pause (PVP, magenta) and eye-head (EH, blue) neurons project to

extraocular motoneurons within the abducens nucleus and mediate reflexive behaviors such as the vestibulo-ocular reflex (VOR). Vestibular-only (VO,

green) neurons project to the ventral posterolateral (VPL) nucleus of the Thalamus, thereby mediating self-motion perception, as well as to the spinal

Figure 1 continued on next page
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Central vestibular neurons display large heterogeneity in their resting
discharges
We quantified the resting discharges of central vestibular neurons using both the mean firing rate as

well as the CV of the interspike interval (ISI) distribution (see Materials and methods). The latter mea-

sure was used to quantify the resting discharge variability. Our results show that central vestibular

neurons displayed resting discharges that were quite variable (PVP: 58 ± 19 sp/s, CV = 0.26 ± 0.13;

EH: 47 ± 19 sp/s, CV = 0.40 ± 0.17; VO: 50 ± 18 sp/s, CV = 0.35 ± 0.18). Interestingly, for all three

classes, some neurons displayed resting discharges that were more regular as quantified by low CV

values, while other neurons instead displayed resting discharges that were more irregular as quanti-

fied by higher CV values (Figure 1B, insets).

We also quantified the resting discharge of central vestibular neurons by computing the spike

train power spectrum (see Materials and methods). There were large differences between the power

spectra of neurons displaying low and high resting discharge variability. Indeed, for neurons with

low variability, the spike train power spectrum varied strongly as a function of frequency. Notably,

spectral power displayed local maxima at the neuron’s firing frequency (i.e., the fundamental;

Figure 1B) as well as higher harmonics (i.e., integer multiples of the fundamental). Spectral power

was low within the frequency range of natural self-motion (i.e., 0–20 Hz; see orange bands in bottom

panels of Figure 1B), which is expected as theory predicts spectral power at low frequencies is pro-

portional to CV2 (Holden, 1976). In contrast, the spike train power spectrum of more irregular neu-

rons was more independent of frequency as evidenced from lack of local maxima at higher

harmonics (Figure 1B, top panels). Spectral power within the frequency range of natural self-motion

(see orange bands in bottom panels of Figure 1B) was higher than for neurons with low variability.

We note that this is again expected based on theory (Holden, 1976). It is important to note that the

CV distribution was unimodal for all neuron classes (Figure 1C, bottom) which suggests that variabil-

ity is distributed along a continuum for central neurons. We emphasize that we looked at example

neurons whose CV was within the lower and higher range of the distribution. For simplicity, we will

henceforth refer to these neurons as having "low resting discharge variability" and "high resting dis-

charge variability", respectively.

To assess whether differences in resting discharge variability displayed by central vestibular neu-

rons were related to other discharge properties, we first compared the mean firing rate to CV across

our dataset (Figure 1C). We found that the mean firing rate was not significantly correlated with CV

for all central vestibular neuronal classes (PVP: R = �0.08, p=0.71; EH: R = �0.29, p=0.29; VO:

R = �0.38, p=0.13). Further, we did not observe any significant differences between the resting fir-

ing rates of PVP, EH, and VO neurons (p�0.11, one-way ANOVA with Bonferroni correction;

Figure 1D, top panel) in general, except that PVP neurons displayed significantly lower CV values

than EH neurons (p<0.03, one-way ANOVA with Bonferroni correction; Figure 1D, bottom panel).

Thus, while central vestibular neurons displayed a wide range of resting discharge firing rate and var-

iability within each class, both quantities were similarly distributed for all three classes.

Figure 1 continued

cord, mediating vestibulo-spinal reflexes. Recordings were made from PVP, EH and VO neurons. (B) Top: Spike train power spectra of example PVP

(left), EH (middle), and VO (right) neurons that display high variability. Bottom: Spike train power spectra of example PVP (left), EH (middle), and VO

(right) neurons that display low variability. The orange bands indicated by the red arrows show the frequency range of naturalistic head motion stimuli

(0–20 Hz). The insets show the interspike interval (ISI) distribution for each example neuron. (C) Firing rate as a function of the ISI coefficient of variation

(CV). In all three cases, there was no significant correlation (PVP: R = �0.08, p=0.71; EH: R = �0.29, p=0.29; VO: R = �0.38, p=0.13). The dashed black

curves show the distributions for all data. The six example neurons shown in panel B are represented by open symbols. (D) Top: Population-averaged

firing rates for PVP, EH, and VO neurons did not differ significantly from one another (one-way ANOVA, F(2,51) = 2.31, p=0.11). Bottom: Population-

averaged CV values for PVP, EH, and VO neurons. The CV of VO neurons was more broadly distributed than that of PVP and EH neurons (Levene’s test

F = 7.2, p=0.001) while the distribution of the firing rate was similar for all classes of neuron (Levene’s test F = 0.87, p=0.43). PVP neurons displayed

lower CV values than VO and EH neurons on average (one-way ANOVA, F(2,51) = 3.58, p=0.03).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Neuronal classification.

Figure supplement 2. Sensitivities to head and eye movements for PVP, EH, and VO neurons.
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Effects of variability on central vestibular neuronal coding of
naturalistic self-motion
We next investigated the effects of variability on coding strategy during naturalistic self-motion stim-

ulation. To do so, we recorded each neuron’s activity during the application of yaw rotations whose

time course closely mimicked those experienced during natural conditions (i.e., the naturalistic self-

motion stimulus; Figure 2A,B, see Materials and methods). The time-dependent firing rates in

response to naturalistic self-motion stimulation of two example PVP neurons displaying high (left

panel) and low (right panel) variability are shown in Figure 2C. Similar graphs for both high and low

variability EH and VO example neurons are shown in Figure 2—figure supplement 1. These exam-

ples were typical in that all neurons responded to the head motion stimulus, although EH neurons

typically responded with less modulation in firing rate than PVP and VO neurons (compare Fig-

ure 2—figure supplement 1 to Figure 2C). To quantify optimized coding via temporal whitening,

we computed the spike train power spectrum during naturalistic stimulation (see

Materials and methods). Our analysis revealed that the power spectra of PVP, EH, and VO neurons

displaying high variability were independent of frequency (Figure 2D, solid curves) as they did not

deviate from the Poisson confidence interval with the exception of low (<1 Hz) frequencies for the

example EH neuron (Figure 2D, gray bands). As mentioned above, the fact that the spectral power

was independent of frequency is indicative of temporal whitening. In contrast, spectral power for

PVP, EH, and VO neurons displaying low variability decayed similarly to the stimulus power spectrum

with increasing frequency and was thus not independent of frequency (Figure 2D, compare dashed

curves to solid black). As such, these power spectra strongly deviated from the Poisson confidence

interval (Figure 2D, gray bands), indicating that these neurons did not display temporal whitening.

To quantify differences in temporal whitening, we computed the same whitening index measure

that was used in our previous study (Mitchell et al., 2018). Overall, we found that the whitening

index similarly depended on CV for all neuronal classes (Figure 2E, left panel). Further, we found

that the whitening index was independent of resting discharge firing rate (Figure 2—figure supple-

ment 2A) and the whitening index computed from neurons whose resting discharge firing rates

were within a narrow range (45–55 sp/s) strongly depended on CV (Figure 2—figure supplement

2B). These results, together with the fact that neural sensitivity was independent of variability (Fig-

ure 2—figure supplement 3), suggest that the differences in whitening are primarily due to differen-

ces in variability and, as such, are universal for central vestibular neurons. To test that changes in

whitening index were primarily due to changes in CV, we first built a simple model (see

Materials and methods) in which changes in variability were explored systematically. Overall, this

model correctly fits data from PVP, EH, and VO neurons across all levels of resting discharge variabil-

ity (Figure 2E, left panel, red curve). Second, to further test our hypothesis, we built a linear-nonlin-

ear cascade model (see Materials and methods and Figure 2—figure supplement 4A) that included

the effects of variability in order to predict the spike train power spectrum during naturalistic stimu-

lation for individual neurons. Overall, this model accurately predicted the response power spectra of

the same six example neurons (Figure 2—figure supplement 4B). As such, there was excellent

agreement between predicted and actual whitening index values for our dataset (Figure 2—figure

supplement 4C; Student’s t-test, PVP: F(19) = 0.44, p=0.66; EH: F(14) = 0.98, p=0.34;

VO = F(16)=0.96, p=0.35). We note that the power spectrum of the resting discharge variability was

not different from that of the trial-to-trial variability during stimulation for our dataset (Figure 2—fig-

ure supplement 5). Thus, it is reasonable to model the noise/variability during stimulation by adding

the variability from the resting discharge. On average, whitening index values for PVP and EH neu-

rons were comparable to those obtained for VO neurons (Figure 2E, right panel). While consistent

with our previous finding that, at the population level, VO neurons tend to optimally encode the

stimulus via temporal whitening, our current findings emphasize that there are important differences

in optimal coding at the individual neuron level both within and across neuronal classes. Specifically,

central neurons with low variability tend to not display temporal whitening.

We note that, unlike VO neurons, PVP and EH neurons are sensitive to eye as well as head move-

ments. Thus, we next tested that our results for PVP and EH neurons were not due to patterning of

quick phases and/or systematic changes in eye position that occurred throughout vestibular stimula-

tion. To do so, we first compared results obtained on data where spiking activity during vestibular

quick phases was removed and the remaining slow phase epochs concatenated (i.e., was is shown in
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Figure 2. Variability strongly influences optimized coding via temporal whitening. (A) The animal was head fixed within a chair that was mounted on top

of a turn table whose command signal was adjusted to give rise to head movements that closely matched those seen under natural conditions. (B) Time

series showing the entire time course of the naturalistic stimulus. (C) Segment of the naturalistic stimulus (top) corresponding to the blue rectangle in

panel B together with time-dependent firing rate responses from the same example PVP neurons shown in Figure 1 with high (left) and low (right)

Figure 2 continued on next page
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Figure 2) to the entire dataset. Overall, no differences were observed (data not shown). Next, we

compared results obtained by restricting our analysis to epochs during which the eye position was

relatively constant (i.e., within + / - 5˚; see Materials and methods) to those obtained using the full

dataset (i.e., when eye position was not restricted). No significant differences were observed (Fig-

ure 2—figure supplement 6; Student’s t-test, F(34) = 1.3, p=0.2). Thus, our analysis indicates that

differences in whitening observed for PVP and EH neurons are not due to differences in quick phase

generation and/or changes in eye position during stimulation.

Finally, we investigated the relative contributions of variability vs. tuning toward determining tem-

poral whitening for all central vestibular neural classes. Our previous results have shown that variabil-

ity within the VO neuron population was essential toward determining temporal whitening

(Mitchell et al., 2018). Here we extended this analysis to all three central vestibular neuron classes

and investigated the effects of different levels of resting discharge variability within each class (Fig-

ure 2—figure supplement 7). Overall, central neurons with lower variability as quantified by the CV

of the resting discharge displayed lower noise power than their counterparts with higher variability.

However, there were no significant differences in the amount of signal power transmitted. As such,

the signal-to-noise ratio (SNR) decreased with increasing variability. This latter result is important as

it suggests that central vestibular neurons with lower variability actually transmit more information

than those with higher variability. To test this, we computed the mutual information rate (see

Materials and methods) for our dataset and found a significant decrease with increasing CV, thereby

confirming our hypothesis (Figure 2—figure supplement 7). Finally, we quantified optimality of cod-

ing (i.e., the mutual information divided by its maximum possible value for a given level of variability)

and found a significant increase with increasing CV (Figure 2—figure supplement 7), thereby con-

firming results obtained using the whitening index. Thus, while central vestibular neurons with high

variability transmit less information in absolute terms than their counterparts with low variability,

they are more optimal in the sense that the mutual information is closer to the maximum possible

value.

Neurons with lower variability faithfully encode the detailed time
course of naturalistic self-motion stimuli
Our results so far have shown that central vestibular neurons with low variability did not optimally

encode naturalistic self-motion stimuli via temporal whitening but transmitted more information than

their counterparts with high variability. This raises the question as to what is the functional role of

such neurons? Our results showing that the spike train power spectrum of these neurons decayed

with increasing frequency like that of the naturalistic self-motion stimulus, together with higher

mutual information rates, suggest that these neurons faithfully relay information about the detailed

time course of self-motion signals. Indeed, inspection of their time-dependent firing rate responses

to naturalistic self-motion stimulation suggests a strong linear relationship between their responses

Figure 2 continued

variability. Black arrows indicate times at which vestibular quick phases occurred and during which the neurons paused. (D) Response power spectra of

PVP (left), EH (middle), and VO (right) neurons with high (solid) and low (dashed) variability. The gray bands show the Poisson confidence interval. It is

seen that, while the power spectra of neurons with high variability were always well within the confidence interval and were thus independent of

frequency, this was not the case for neurons with low variability whose power spectra decayed as a function of increasing frequency similarly to that of

the stimulus (black). (E) Left: Whitening index increases as a function of CV. Our model (red line) accurately fits experimental data (all data: R2 = 0.63;

PVP: R2 = 0.53; EH: R2 = 0.63; VO: R2 = 0.78). The six example neurons shown in panel B are represented by open symbols. Right: Population-averaged

whitening index values were similar for PVP, EH, and VO neurons (Kruskal-Wallis, H(2) = 2.63, p=0.26). The gray-dashed lines show the whitening index

value computed when using the stimulus’ power spectrum.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Example EH and VO neurons with high and low variability.

Figure supplement 2. Effects of firing rate on whitening.

Figure supplement 3. Gain vs. CV for PVP, EH, and VO neurons.

Figure supplement 4. Using linear-nonlinear cascade models to predict responses of central vestibular neurons.

Figure supplement 5. Resting discharge and trial-to-trial variability for PVP, EH, and VO neurons.

Figure supplement 6. Eye position during naturalistic stimuli does not contribute to temporally whitened responses.

Figure supplement 7. Signal and noise power, as well as SNR, for example PVP, EH, and VO neurons with high and low variability.
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and the stimulus (Figure 2C and Figure 2—figure supplement 1, bottom panels). To test this

hypothesis, we quantified the fraction of variance in the stimulus that could be correctly recon-

structed from the spiking activity by using a linear decoder that minimizes the mean-squared error

between the original and reconstructed stimulus waveforms. Specifically, the reconstructed stimulus

was obtained by convolving the spiking activity with a filter whose shape was chosen such as to mini-

mize the mean-squared error between the reconstructed and original stimulus waveforms (see

Materials and methods and Figure 3A). The left panel of Figure 3B shows the original naturalistic

self-motion stimulus (black) together with the reconstructed stimulus (red) for an example PVP neu-

rons with high variability. The right panel of Figure 3B shows the same but for an example PVP neu-

ron with low variability. These examples were typical in that there was a much better match between

the original and reconstructed stimuli for the PVP neuron with low variability (Figure 3B, compare

left and right panels). Qualitatively similar results were obtained for EH and VO neurons (Figure 3—

figure supplement 1). We quantified these results by computing the coding fraction (CF), which is

the fraction of variance in the stimulus that is correctly reconstructed (see Materials and methods).

Overall, we found a strong negative correlation between CF and variability as quantified by CV

(Figure 3C; All data: R = �0.53, p=10�4; PVP: R = �0.51; p=0.02; EH: R = �0.07, p=0.8; VO:

R = �0.65,p=4.5�10�3). Further, we found that CF was independent of the resting discharge firing

rate (Figure 3—figure supplement 2A: All data: R = 0.13, p=0.34; PVP: R = 0.05, p=0.82; EH:

R = 0.01, p=0.96; VO: R = �0.06, p=0.81). Moreover, CF computed from neurons whose firing rates

were within a narrow range (45–55 sp/s) also strongly depended on CV (Figure 3—figure supple-

ment 2B: All data: R = �0.54, p=0.03; PVP: R = �0.96, p=0.03; EH: R = �0.20, p=0.7; VO:

R = �0.87, p=0.02). These results strongly suggest that changes in CF were primarily due to changes

in the resting discharge CV.

Importantly, the fact that low values of CF were obtained for neurons with high variability was not

trivially due to a lack of response. This is because, as mentioned above, there was no significant cor-

relation between neural sensitivity and variability (Figure 3D). Moreover, as noted above, there was

no significant correlation between neural sensitivity to sinusoidal stimulation at different frequencies

and variability (Figure 2—figure supplement 2). Overall, PVP neurons displayed the largest coding

fraction, followed by VO neurons, and EH neurons displayed the lowest coding fractions overall

(Figure 3E). These results demonstrate that neurons with low variability more faithfully represented

the stimulus’ detailed time course in their spiking activities than their counterparts with high variabil-

ity. Thus, together with our results above showing that neurons with low variability do not display

temporal whitening, we conclude that variability establishes a trade-off between faithful stimulus

encoding and temporal whitening.

Faithful encoding of the time course of naturalistic self-motion stimuli by neurons with low vari-

ability is best matched to the known decoding properties of VOR pathways in order to generate the

VOR.

Our results show that, across all classes, PVP neurons most faithfully represented the stimulus’

detailed time course in their firing activities. Nevertheless, a significant fraction of PVP neurons dis-

played temporal whitening. Importantly, information is only useful to the organism if it is decoded

by downstream brain areas. As mentioned above, VOR pathways are an attractive model for under-

standing how information transmitted by sensory neurons is actually decoded downstream to gener-

ate behavior because of their relatively simple and well-understood neural circuitry. We first tested

whether the VOR evoked in response to naturalistic self-motion stimulation was in fact compensa-

tory. We found that indeed both animals generated robust compensatory eye movements character-

ized by gains approaching unity, such that the eye velocity was essentially the opposite of head

velocity (Figure 4A). This brings the important question as to how these compensatory eye move-

ments are generated. Specifically, which of faithful encoding or temporal whitening by PVP neurons

is most appropriate to generate compensatory VOR eye movements during naturalistic self-motion

stimulation.

To answer this question, we used well-established models of VOR pathways in which the head

velocity input elicits responses from peripheral vestibular afferents that project to VOR neurons. The

output of VOR neurons is in turn decoded by the neural integrator as well as by extraocular moto-

neurons and the oculomotor plant in order to generate compensatory eye movements (Figure 4B,

top; see Materials and methods). Our simulations show that, when the naturalistic head velocity stim-

ulus was used as input, the model generated a robust VOR consistent with that observed
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Figure 3. Central vestibular neurons with low variability faithfully encode the detailed time course of naturalistic self-motion stimuli. (A) Schematic

showing the stimulus reconstruction technique. The head velocity stimulus (left) is presented while neural activity (middle) is recorded and the neuron

(middle left) is treated as a "black box". The neural activity is then convolved with an optimal filter (middle right) in order to obtain the reconstructed

stimulus (right). This filter is chosen such as to minimize the mean square error between the original and reconstructed stimuli (see

Materials and methods). (B) Head velocity (black) and reconstructed (red) stimuli from the same example PVP neurons as in Figure 1 with high (left) and

Figure 3 continued on next page
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experimentally (Figure 4—figure supplement 1). Next, we used the spiking activities of PVP neu-

rons during naturalistic stimulation as input to downstream decoders (i.e., the neural integrator,

extraocular motoneurons, and the oculomotor plant) in order to predict compensatory VOR eye

movements (Figure 4B, bottom). The predicted eye velocity was then compared to the actual eye

velocity (i.e., that computed from measured eye movements) for each PVP neuron in our dataset.

Figure 4C shows the predicted (red) and actual (black) eye velocity time series (inset) and power

spectra (main panels) when the spiking activities from example PVP neurons with low (left) and high

(right) variability were used as input. We found that there was much better agreement between the

predicted and actual eye velocity signals when the input from an example PVP neuron with low vari-

ability was used (compare right and left panels in Figure 4C). The agreement between predicted

and actual eye velocity signals was quantified using a matching index that ranged between 0 (no

agreement) and 1 (perfect agreement; see Materials and methods). There was a strong negative cor-

relation between the matching index and variability (R = �0.64, p=2.4�10�3; Figure 4D, magenta),

suggesting that PVP neurons with lower variability that faithfully represent the detailed time course

of head movements make the primary contribution to generate compensatory VOR eye movements.

To further test this proposal, we compared the performance at stimulus reconstruction from neuron

pairs with varying levels of variability. Overall, we found that the performance of neuron pairs with

low variability was overall greater than that obtained when considering pairs with low and high vari-

ability (Figure 4—figure supplement 2), which confirms our proposal. For completeness, we also

tested which of faithful encoding or temporal whitening by EH neurons, which are required for VOR

adaptation and motor learning, is most appropriate to generate compensatory VOR eye movements.

Overall, results for EH neurons were qualitatively similar to those obtained for PVP neurons (Fig-

ure 4—figure supplement 3 and Figure 4D, blue; R = �0.64, p=0.01). Thus, taken together, our

results point to an important functional role for VOR neurons with low variability that faithfully repre-

sent the detailed time course of head movements. Specifically, the activities of these neurons are

best matched to the known dynamics of downstream decoders in order to generate compensatory

VOR eye movements.

Discussion

Summary of results
We investigated the effects of variability on the responses of three different central vestibular neuro-

nal classes: neurons that mediate vestibulo-spinal pathways and project to the vestibular thalamus (i.

e., VO), neurons that make the primary contribution to the VOR (i.e., PVP), and neurons that mediate

VOR adaptation (i.e., EH). Overall, we found that heterogeneities in resting discharge variability

within each class strongly influenced coding strategies. Specifically, neurons with lower resting dis-

charge variability transmitted the highest amounts of information and thus most faithfully encoded

the stimulus’ detailed timecourse. In contrast, neurons with higher resting discharge variability most

optimally encoded the stimulus via temporal whitening, as their mutual information rates were closer

to the maximum possible value. These latter neurons displayed lower information rates and thus did

not faithfully encode the stimulus. We emphasize that both temporal whitening and faithful encoding

were distributed along a continuum for our dataset. Interestingly, we found that PVP neurons, on

Figure 3 continued

low (right) variability. The quality of the reconstruction was quantified using the coding fraction (CF), which ranges between 0 and 1 and represents the

fraction of variance in the stimulus that is correctly reconstructed (see Materials and methods). The insets show the optimal kernel for each example

neuron. The gaps in the reconstructed stimulus traces indicate segments during vestibular quick phases. (C) CF decreases as a function of increasing

CV (all data: R = �0.53, p=1.0�10�4; PVP: R = �0.51; p=0.02; EH: R = �0.07, p=0.8; VO: R = �0.65, p=4.5�10�3; R values were computed on log-

transformed data). The six example neurons shown in panel B are represented by open symbols. (D) Top: Neural sensitivity did not decrease with

increasing CV (all data: R = �0.24, p=0.09; PVP: R = �0.22; p=0.35; EH: R = 0.35, p=0.20; VO: R = �0.25, p=0.34). The legend is the same as in panel C.

Bottom: Population-averaged values of CF were highest for PVP and lowest for EH neurons (one-way ANOVA, F(2,51) = 9.1, p=4.5�10�4).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effects of variability on stimulus reconstruction for EH and PVP neurons.

Figure supplement 2. Effects of firing rate on coding fraction.
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Figure 4. Central VOR neurons (i.e., PVP and EH) with low variability are necessary to properly generate compensatory VOR eye movements. (A) Head

(black) and trial-averaged eye (orange and purple) velocity traces during naturalistic self-motion stimulation for the two animals used in this study.

Activity during saccades were not included in the averaging. VOR gain values for both animals were close to unity (VOR gain for monkey

1 = 0.95 ± 0.14; VOR gain for monkey 2 = 0.90 ± 0.12). (B) Top: schematic showing VOR pathways. VOR neurons receive input from peripheral afferents

Figure 4 continued on next page
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average, more faithfully encoded the stimulus’ detailed time course as compared to the two other

classes, as quantified by their higher coding fraction values. Using well-established models of VOR

pathways, we showed that faithful stimulus encoding, rather than temporal whitening, is required to

generate the compensatory VOR eye movements measured in our experiments during naturalistic

self-motion stimulation.

Faithful encoding vs. temporal whitening by VOR neurons, implications
for decoding
Here we show for the first time that the detailed time course of head motion can be best recovered

from the spiking activities of PVP neurons during naturalistic stimulation. This finding has important

implications for understanding the sensory-motor transformations that underlie the generation of

the VOR. Indeed, in this context, VOR pathways must account for the dynamics of the oculomotor

plant, which are dominated by the visco-elastic properties of the extraocular muscles and passive tis-

sues in the orbit (Robinson, 1964; Enderle and Wolfe, 1988). Because the properties of the oculo-

motor plant effectively make it a low-pass filter, the relationship between extraocular motoneuron

activity and eye movement must have compensatory frequency dependent dynamics (reviewed in

Robinson, 1981). More recent studies have shown that the properties of extraocular motoneurons

indeed complement those of the oculomotor plant (reviewed in Cullen, 2012) during the VOR

(Sylvestre and Cullen, 1999; Ramachandran and Lisberger, 2006). This raises the question as to

what the output of PVP neurons should be in order to generate the VOR during naturalistic head

movements. Because PVP neurons receive afferent input from the periphery and in turn project

directly to extraocular motoneurons to generate compensatory VOR eye movements within 5 ms

(Huterer and Cullen, 2002), information must be decoded with little or no integration time as

achieved by a coding strategy based on faithful stimulus encoding. In contrast, we argue that tempo-

ral whitening, which requires filtering of the input and thus more complex decoding strategies with

larger integration times, are not suitable for feedforward control of direct VOR pathways.

An open question for understanding the sensory-motor pathways that mediate the VOR is to rec-

oncile how the known nonlinearities displayed by PVP neurons mediate such a linear behavior. Spe-

cifically, the VOR shows remarkable linearity in that the resulting eye movements effectively

compensate for head movements over a wide range of frequencies and amplitudes (Huterer and

Cullen, 2002; Ramachandran and Lisberger, 2006; Sadeghi et al., 2006). In contrast, PVP neurons

demonstrate substantial nonlinearities: their spiking activity is silenced for off-direction rotations and

demonstrates saturation for on-direction rotations for velocities greater than 200 ˚/s (Roy and

Cullen, 2004; Ramachandran and Lisberger, 2006). In this context, it is important to note that pre-

vious studies have shown that extraocular motoneurons display substantial nonlinearities

(Sylvestre and Cullen, 1999). It is further conceivable that, for higher amplitude stimuli than the

ones considered in the present study, PVP neurons that perform temporal whitening contribute to

compensating the nonlinear properties of extraocular motoneurons to ensure a robust VOR.

Interestingly, our results from EH neurons, which mediate VOR adaptation and motor learning

(Lisberger, 1984; Lisberger, 1994; Lisberger et al., 1994; Ramachandran and Lisberger, 2008),

contrast those described above for PVP neurons. Specifically, EH neurons least faithfully followed

the naturalistic stimulus’ detailed time course as compared to other central vestibular neuronal

Figure 4 continued

that respond to head movement input and project to the neural integrator as well as extraocular motoneurons ("MN") and the oculomotor plant which

generates compensatory eye movements. Bottom: We used the spiking activities from both high ("option 1") and low ("option 2") variability VOR

neurons as inputs to the neural integrator and oculomotor plant in order to generate predicted eye movements (red box) that were compared with

actual eye movement. (C) Predicted (red) and actual (black) power spectra of eye velocity when the input is from a neuron with high (left) and low (right)

variability. The insets show the corresponding time series where the dashed gray lines indicate zero velocity. (D) The matching index was negatively

correlated with CV (all data: R = �0.65, p=2.9�10�5; PVP: R = �0.64, p=2.4�10�3; EH: R = �0.64, p=0.01).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Power spectra of the recorded eye velocity (light green) and that predicted from the full VOR model (black) when the recorded

head velocity is used as input.

Figure supplement 2. Effects of variability on coding accuracy of neuron pairs.

Figure supplement 3. Using the power spectra of EH neuron as input in order to generate predictions of the eye velocity.
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classes (Figure 3D,E). This result is consistent with previous observations that EH neurons displayed

weak sensitivities to artificial vestibular sinusoidal stimuli and are more strongly driven by pursuit sig-

nals (Roy and Cullen, 2003). Our results show that EH neurons responded to naturalistic head

motion such that their spiking activities were temporally whitened. This observation raises the ques-

tion as to why such an encoding scheme has been adopted in a pathway that was previously shown

to be specifically responsible for VOR adaptation and motor learning. We hypothesize that the larger

integration time windows needed to properly decode information transmitted via temporal whiten-

ing by EH neurons are beneficial for VOR adaptation and motor learning. Further studies are

required to test this hypothesis.

Faithful encoding vs. temporal whitening by VO neurons, implications
for decoding
The vestibular system is not only necessary for generating the VOR, but also has multiple other

important functions such as self-motion perception and vestibulo-spinal reflexes that control posture.

These functions are mediated by a distinct class of neurons within the vestibular nuclei (i.e., VO neu-

rons) that project to the thalamus (Meng et al., 2007; Marlinski and McCrea, 2009) as well as to

the spinal cord (Abzug et al., 1974; Shinoda et al., 1988; Gdowski and McCrea, 1999). Our previ-

ous study showed that VO neurons optimally encoded naturalistic self-motion via temporal whiten-

ing (Mitchell et al., 2018). The present study provides an important addition to this by investigating

the effects of variability on coding strategy. Specifically, our new findings reveal that, while the

majority of VO neurons displayed high variability and optimally encoded naturalistic head motion

stimuli via temporal whitening, a minority of VO neurons displayed low variability and instead faith-

fully followed the stimulus’ detailed time course. This raises the question: why are there differences

in coding strategies across the VO neuron population?

We speculate that temporal whitening by VO neurons with high variability is functionally advanta-

geous for the control of vestibulo-spinal reflexes. Notably, the inertia of the head-neck system is

higher than that of the oculomotor plant, which has implications for motor control requirements. To

date, studies have shown that central vestibular nuclei neurons within vestibulo-spinal pathways are

more likely to receive input from afferents with more irregular resting discharges (i.e., irregular affer-

ents), while those within vestibulo-ocular pathways are instead more likely to receive input from

afferents with more regular resting discharges (i.e., regular afferents) (Goldberg et al., 1987;

Sato and Sasaki, 1993). Further, the response dynamics of irregular versus regular afferents are best

matched to the mechanical demands of the vestibulo-spinal reflex versus the VOR, respectively

(Fernandez and Goldberg, 1971; Bilotto et al., 1982). Recent studies have further shown that

irregular but not regular afferents display spike timing precision/phase locking (Jamali et al., 2016;

Jamali et al., 2019). Interestingly, spike timing precision/phase locking was also observed at the

next level (Jamali et al., 2016). We hypothesize that this single neuron property induces greater syn-

chrony at the VO population level that in turn better compensates for the inertia of the head-neck

system (reviewed in Cullen, 2019). As such, we propose that temporal whitening by VO neurons

with high variability that preferentially receive input from irregular afferents provides enhanced infor-

mation at the population level, as seen in other systems (Doi et al., 2012; Kastner et al., 2015). Fur-

ther studies using multi-unit recordings from VO neurons are needed to test this hypothesis.

While most VO neurons optimally encoded the naturalistic head motion stimulus via temporal

whitening, a subset of VO neurons instead faithfully encoded the stimulus. This raises the question:

what is the functional role of this subset of neurons? To answer this question, it is useful to consider

that VO neurons also project to the thalamus and thus are thought to play a role in self-motion per-

ception and spatial orientation computation (Meng et al., 2007; Marlinski and McCrea, 2009). One

possibility is that the subset of VO neurons that faithfully follows the stimulus’ detailed timecourse

preferentially projects to thalamus in order to provide information as to the detailed timecourse of

head movements. Additional neurophysiological experiments focusing on how neurons within the

vestibular thalamus respond to naturalistic head motion stimulation, as well as anatomical studies in

which the post-synaptic targets of individual VO neurons are identified, are needed to understand

how information transmitted by the VO neuron population is ultimately decoded.

Finally, we note that, throughout this study and our previous publication (Mitchell et al., 2018),

we assumed that optimality of coding is achieved via temporal whitening. Theoretical studies have

shown that temporal whitening gives rise to maximal information if the input SNR is high
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(van Hateren, 1992a; Rieke et al., 1996). In the case where the input noise for a given frequency is

high (i.e., a low input SNR), optimal coding is instead achieved by filtering out the neural output at

that frequency due to noise contamination (van Hateren, 1992a), which has been observed in the

retina for weak stimulus intensities (van Hateren, 1992b). As such, it is theoretically conceivable that

the lack of temporal whitening observed for central vestibular neurons with low variability could be a

form of optimized coding that is based on a different constraint than temporal whitening. However,

this is unlikely to be the case here since both regular and irregular vestibular afferents that provide

input to central neurons display low trial-to-trial variability during naturalistic self-motion stimulation

(Sadeghi et al., 2007; Jamali et al., 2016; Mitchell et al., 2018). As such, the input SNRto central

vestibular neurons is very likely to be high, such that optimized coding is achieved via temporal whit-

ening according to theory. Moreover, as mentioned above, central neurons within VOR pathways

receive input primarily from regular afferents (Goldberg et al., 1987; Sato and Sasaki, 1993) which

display the least trial-to-trial variability during stimulation and thus the highest input SNR

(Sadeghi et al., 2007; Jamali et al., 2016; Mitchell et al., 2018). Thus, our results showing that

these neurons display the most faithful encoding and the least temporal whitening further support

the hypothesis that optimized coding is achieved via temporal whitening for central vestibular

neurons.

Mechanisms underlying differences in variability in central vestibular
pathways
Here, we have established that differences in resting discharge variability strongly influence coding

strategies by central vestibular neuron populations. This finding then leads to the important question

as to what mechanism(s) underlie the different levels of variability observed across all three classes

of central vestibular neurons. Notably, our results show that variability is distributed along a contin-

uum for all central neural classes. This is different than for vestibular afferents in which variability dis-

plays a bimodal distribution with two distinct classes: regular and irregular (Goldberg, 2000). As

mentioned above, VOR neurons are more likely to receive input from regular afferents, whereas neu-

rons within vestibulo-spinal pathways are instead more likely to receive input from irregular afferents

(Goldberg et al., 1987; Sato and Sasaki, 1993). Thus, one possibility is that differences in variability

across central neurons are due to different amounts of feedforward input from regular and irregular

afferents. Another possibility, which is not mutually exclusive, is that differences in the intrinsic prop-

erties of central neurons contribute to differences in variability (Babalian and Vidal, 2000; Ris et al.,

2001; Sekirnjak and du Lac, 2002; Kodama et al., 2020). Finally, it is important to note that central

vestibular neurons also receive direct input from central structures including cortical, cerebellar, as

well as numerous brain stem nuclei (Akbarian et al., 1994; Voogd et al., 1996; McCrea and Horn,

2006) (see (Angelaki and Cullen, 2008) for review). These central inputs also likely contribute to

shaping neuronal variability. For example, extracellular recordings in the cerebellar flocculus reveal

irregularities in the spontaneous simple spike firing rate of Purkinje cells (Hoebeek et al., 2005),

which provides a clear source of variability to EH neurons. Further studies are needed to understand

how these different sources of input, together with differences in intrinsic properties, contribute to

generating the different levels of variability seen experimentally in central vestibular neurons.

Materials and methods

Surgical procedures and data acquisition
All experimental protocols were approved by the McGill University Animal Care Committee and

complied with the guidelines of the Canadian Council on Animal Care. Two rhesus macaque mon-

keys (Macaca mulatta) were prepared for chronic extracellular recording using aseptic surgical tech-

niques as previously described (Mitchell et al., 2018). Briefly, animals were pre-anesthetized with

ketamine hydrochloride (15 mg/kg im) and injected with buprenorphine (0.01 mg/kg im) and diaze-

pam (1 mg/kg im) to provide analgesia and muscle relaxation, respectively. Loading doses of dexa-

methasone (1 mg/kg im) and cefazolin (50 mg/kg iv) were administered to minimize swelling and

prevent infection, respectively. Anticholinergic glycopyrrolate (0.005 mg/kg im) was also preopera-

tively injected to stabilize heart rate and to reduce salivation, and then every 2.5–3 hr during surgery.

During surgery, anesthesia was maintained using isoflurane gas (0.8–1.5%), combined with a
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minimum 3 l/min (dose adjusted to effect) of 100% oxygen. Heart rate, blood pressure, respiration,

and body temperature were monitored throughout the procedure. During the surgical procedure, a

titanium post for head immobilization and a titanium recording chambers that allowed access to the

vestibular nucleus (VN) were fastened to each animal’s skull with titanium screws and dental acrylic.

Craniotomy was performed within the recording chamber to allow electrode access to the brain

stem. An 18-mm-diameter eye coil (three loops of Teflon-coated stainless-steel wire) was implanted

in one eye behind the conjunctiva (Fuchs and Robinson, 1966). Following surgery, we continued

dexamethasone (0.5 mg/kg im; for 4 days), anafen (2 mg/kg day one, 1 mg/kg on subsequent days),

and buprenorphine (0.01 mg/kg im; every 12 hr for 2–5 days). In addition, cefazolin (25 mg/kg) was

injected twice daily for 10 days. Animals recovered in 2 weeks before any experimenting began.

During experiments, monkeys were head-restrained and seated in a primate chair mounted on a

motion platform rotating about the vertical axis (i.e., yaw rotation). We recorded the single-unit

activities of three classes of vestibular neurons within the vestibular nuclei (PVP, EH and VO neurons)

using enamel-insulated tungsten microelectrodes. Extracellular activity of the vestibular neurons was

initially recorded during standard head-restrained paradigms to characterize their sensitivity to eye

movements and head velocity. To quantify the neuronal sensitivity to eye movements, monkeys were

trained to visually track a target light. Gaze position was measured using the magnetic search-coil

technique. Eye sensitivity was then characterized during saccadic and smooth pursuit eye move-

ments. Both PVP and EH responses were proportional to eye position following saccade and were

responsive during smooth pursuit. Characteristic to the PVP, they paused during saccades (Fig-

ure 1—figure supplement 1). VO neurons were unresponsive to eye movements. Neuronal sensitivi-

ties to head velocity were assessed during VOR and vestibulo-ocular reflex cancellation (VORc)

paradigms while the monkeys were passively rotated about the vertical axis. During naturalistic yaw

rotation, all neuronal classes responded to stimulation in a manner consistent with their classification

(Cullen et al., 1993; Cullen and McCrea, 1993). Sinusoidal head motion stimuli with frequencies

0.5, 1, 2, 3, 4, 5, 8, 17 Hz and amplitudes of 20 deg/s were then applied to characterize head motion

sensitivity. We then recorded neural activity during naturalistic head yaw rotation that mimicked the

head velocity of a freely moving monkey (Carriot et al., 2017), as previously described

(Mitchell et al., 2018). We note that the probability distribution of the naturalistic head motion stim-

ulus was well-fit by a Gaussian (see Figure 1—figure supplement 1B of Mitchell et al., 2018). We

note that the distribution of head velocities was symmetric around zero (p=0.33, triples test)

(Randles et al., 1980). Motion platform velocity was measured using a one-dimensional angular

gyroscope (Watson Inc). Data were collected through the Cerebus Neural Signal Processor (Black-

rock Microsystems). Action potentials were discriminated from extracellular recordings offline by

using a custom-written algorithm (Matlab).

Analysis of neuronal discharges
Data were imported into Matlab for analysis using custom-written algorithms. Head velocity signals

were sampled at 1 kHz and digitally low-pass filtered at 125 Hz. For each neuron, we generated a

binary spike train R(t) with a sampling rate of 1 kHz. Eye position sensitivities were determined from

saccadic as well as smooth pursuit eye movements using standard methodologies (Roy and Cullen,

2002). Head velocity sensitivities were then determined during sinusoidal stimulation using standard

models (Roy and Cullen, 1998). Neuron response spectra during naturalistic stimulation were com-

puted from digitized spike trains using the Matlab function "pwelch" in which epochs during vestibu-

lar quick phases were removed. Quick phases were detected using standard methodology (Roy and

Cullen, 2002). To test whether the neuron’s response power spectra was constant across frequen-

cies, we calculated the whitening index as the integral of the spike train power spectrum from 0 to

20 Hz divided by the integral of a simulated white response at maximum neuron power across fre-

quency range (i.e., 0–20 Hz). The stimulus power spectrum and whitening index were computed

from the head velocity signal using the same method as for the neuron’s response. Periods of spon-

taneous activity were used to calculate the resting discharge power spectra using the Matlab func-

tion "pwelch". For EH and PVP neurons, we concatenated epochs during fixation at 0 deg.

Variability was quantified using the CV, which is the standard deviation to mean ratio of the inter-

spike interval (i.e., the times between consecutive action potential firing) distribution.
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Response dynamics for naturalistic stimuli
The response tuning function was computed from the transfer function H fð Þ using:

G fð Þ ¼ H fð Þj j

H fð Þ ¼ PRS fð Þ
PSS fð Þ

Where PRS fð Þ is the cross-spectrum between the stimulus S tð Þ and the binary spike train R tð Þ, and
PSS fð Þ is the power spectrum of the stimulus S tð Þ. We used G f ¼ 1 Hzð Þ to quantify sensitivity for plot-

ting as a function of variability. Spectral quantities (i.e., power spectra, cross-spectra) were estimated

using multitaper estimation techniques (Jamali et al., 2016; Jamali et al., 2019; Jarvis and Mitra,

2001; Schneider et al., 2015). We used the stimulus reconstruction method to quantify faithful

encoding of the stimulus’ detailed time course by neural activity (Gabbiani and Koch, 1998;

Marre et al., 2015; Massot et al., 2011; Rieke et al., 1996). Specifically, the reconstructed stimulus

for N neurons is given by:

Sreconstructed tð Þ ¼
X

N

i¼1

Ki �Rið Þ tð Þ

where, for neuron i, Ri tð Þ is the binary sequence and Ki is the optimal kernel. When N=1, the Fourier

transform of the kernel K1 tð Þ is given by the following equation:

K
~

1 fð Þ ¼ PR1S �fð Þ
PR1R1

fð Þ

where, for neuron i, PRiRi
fð Þ is the power spectrum of the binary spike train Ri tð Þ, and PRiS fð Þ is the

cross-spectrum between the binary spike train Ri tð Þ and the stimulus S tð Þ. When N = 2, the Fourier

transforms of the kernels are given by:

K
~

1 fð Þ
K
~

2 fð Þ

 !

¼ ccPR1R1
fð Þ PR1R2

fð Þ
PR2R1

fð Þ PR2R2
fð Þ

� ��1
PR1S �fð Þ
PR2S �fð Þ

� �

where, for neurons i and j, PRiRj
fð Þ is the cross-spectrum between the binary spike trains Ri tð Þ and

Rj tð Þ. We assessed the quality of the reconstruction by computing the coding fraction CF:

CF ¼ 1�
ffiffiffiffiffi

"2
p

s

where "
2 ¼ S tð Þ� Sreconstructed tð Þð Þ2
D E

is the mean square error, <. . .> denotes an average over time,

and s is the standard deviation of the stimulus S tð Þ. CF ranges between 0 and 1 and represents the

fraction of variance in the stimulus that is correctly reconstructed. The stimulus reconstruction was

applied to single neurons (i.e., N=1) as well as for PVP neuron pairs (i.e., N=2). For PVP neuron pairs,

neurons were grouped into those with “low resting discharge variability” and those with “high rest-

ing discharge variability”. Specifically, we took the 5 PVP neurons having the lowest resting dis-

charge variability and the 5 PVP neurons with the highest resting discharge variability, as quantified

by CV.

We computed the trial-to-trial variability as done previously (Mitchell et al., 2018). Briefly, the

residuals DRi were computed as:

Ri ¼ Ri�
1

N

X

N

i¼1

Ri

and the variability power spectrum was computed as the average power spectrum of the residuals.

Here Ri is the binary spike train obtained for the ith presentation of the stimulus. Our results show

that this power spectrum was similar to that of the resting discharge obtained in the absence of

stimulation (Figure 2—figure supplement 3).
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To predict the response power spectrum PRR;predicted fð Þ to the naturalistic stimulus, we fit a linear-

nonlinear cascade model to our data (Chichilnisky, 2001), where the predicted firing rate is given

by:

FRpredicted tð Þ ¼G H
~

� S
� �

tð Þ
� �

where S tð Þ is the stimulus, H
~

tð Þ is the Fourier transform of the transfer function H(f), "*" denotes the

convolution, and G is a nonlinear function that is determined by plotting the actual firing rate as a

function of the linear prediction H
~

� S
� �

tð Þ (Schneider et al., 2015). The predicted response power

spectrum Pr fð Þ is then given by:

PRR;predicted fð Þ ¼ P0 fð ÞþPFR;predicted fð Þ

where PFR;predicted fð Þ is the power spectrum of FRpredicted tð Þ and P0 fð Þ is the power spectrum of the

binary sequence obtained in the absence of stimulation (i.e., resting discharge). We note that the

above mentioned fact that the head velocity stimulus probability distribution is symmetric with

respect to zero (i.e., P(s)=P(-s)) implies that there will not be any inconsistencies or biases in our

transfer function and LN model estimates (Meyer et al., 2016; Paninski, 2003; Chichilnisky, 2001).

To test whether the response power is independent of frequency f, we simulated 1000 Poisson

processes with the same number of spikes as contained in each neuron’s spike train and computed

the power spectra obtained for each Poisson spike train. We found that the distributions at every

frequency were Gaussian (Shapiro-Wilk test, all p-values>0.05) as expected from the central limit

theorem and obtained a 95% confidence interval that is shown in the figures.

Contribution of the neuron’s eye sensitivity to response power
spectrum
PVP and EH neurons are responsive to changes in eye position that occur during naturalistic head

motion during the VOR or during quick phases. To test whether the transmitted power is influenced

by the neuronal sensitivity to eye position, we computed the response power for concatenated seg-

ments of the naturalistic stimulus for which the eye position was confined between ± 5o.

VOR
VOR gain was computed as the opposite of the slope of the best-fit linear regression between head

velocity and eye velocity. Epochs during which the monkeys performed saccades were not included

in the regression.

Model of ocular motoneuron responses to naturalistic self-motion
We used the following model (Robinson, 2011) in which the eye velocity is related to the head

velocity by the following:

EV
~

fð Þ ¼ Tafferents fð Þ TVN fð Þ TNI fð Þ TPlant fð Þ HV
~

fð Þ

Where EV
~

fð Þ is the Fourier transform of the eye velocity, HV
~

fð Þ is the Fourier transform of the

head velocity, and we have:

Tafferents fð Þ ¼ s s T1þ1ð Þ
s T2þ1ð Þ s Tcþ1ð Þ

TVN fð Þ ¼�gVOR
TVOR

s TVORþ1ð Þ
s Tcþ1ð Þ
Tc

TNI fð Þ ¼ Te1þ 1

s

TPlant fð Þ ¼ s e�st

s Te1þ1ð Þ s Te2þ1ð Þ

where s¼ 2pif , i¼
ffiffiffiffiffiffiffi

�1
p

, T1= 0.0175 s, T2 = 0.0027 s, Tc=5.7 s are time constants representing the

dynamics of sensory transduction and afferent filtering properties (Hullar et al., 2005;

Schneider et al., 2015). gVOR is the VOR gain, TVOR=16 s is the VOR time constant. “NI” is the neural

integrator. Te1= 1 s and Te2= 0.016 s are time constants describing the neural integrator and plant

dynamics, while t = 0.008 s is the delay (Robinson, 2011). The output of VOR neurons is given by:
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R
~

VOR fð Þ ¼ Tafferents fð Þ TVN fð Þ HV
~

fð Þ

where R
~

VOR fð Þ is the Fourier transform of the spiking activity of VOR neurons. As such, the predicted

eye velocity is given by:

~EVpredicted fð Þ ¼ TNI fð Þ TPlant fð Þ R
~

VOR fð Þ

where EV
~

predicted fð Þ is the Fourier transform of the predicted eye velocity. Multiplying both sides by

the complex conjugate gives us the power spectrum of the predicted eye velocity:

PEV ;predicted fð Þ ¼ TNI fð Þ TPlant fð Þj j2PVOR fð Þ

which was then compared with the power spectrum of the eye velocity signal recorded during

experiments. The matching index was computed as:

MI ¼ 1�
log PEV ;predicted fð Þ
� �

� log PEV ;actual fð Þ
� �� �2

D E

sEP;actual

0

@

1

A

where PEP;actual fð Þ is the power spectrum of the actual eye velocity, sEV ;actual is the standard deviation

of log PEP;actual fð Þ
� �

and “log” denotes the natural logarithm.

Statistics
Our sample size was comparable to those employed in the field (Massot et al., 2011;

Mitchell et al., 2018). Before statistical analysis, normality of distribution was evaluated using a Sha-

piro-Wilk’s test. Parametric analysis was used (two-tailed t-test or ANOVA) when data were normally

distributed. When the data deviated from a normal distribution, non-parametric statistic was per-

formed on the data. All significant effects are reported at p<0.05. The data are available on figshare

(http://doi.org/10.6084/m9.figshare.12594803).
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