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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:How the activities of large neural populations are integrated in the brain to ensure accurate

perception and behavior remains a central problem in systems neuroscience. Here, we

investigated population coding of naturalistic self-motion by neurons within early vestibular

pathways in rhesus macaques (Macacca mulatta). While vestibular neurons displayed simi-

lar dynamic tuning to self-motion, inspection of their spike trains revealed significant hetero-

geneity. Further analysis revealed that, during natural but not artificial stimulation,

heterogeneity resulted primarily from variability across neurons as opposed to trial-to-trial

variability. Interestingly, vestibular neurons displayed different correlation structures during

naturalistic and artificial self-motion. Specifically, while correlations due to the stimulus (i.e.,

signal correlations) did not differ, correlations between the trial-to-trial variabilities of neural

responses (i.e., noise correlations) were instead significantly positive during naturalistic but

not artificial stimulation. Using computational modeling, we show that positive noise correla-

tions during naturalistic stimulation benefits information transmission by heterogeneous ves-

tibular neural populations. Taken together, our results provide evidence that neurons within

early vestibular pathways are adapted to the statistics of natural self-motion stimuli at the

population level. We suggest that similar adaptations will be found in other systems and

species.

Introduction

How neural populations represent sensory input (i.e., population coding) remains a central

problem in systems neuroscience [1–10]. For example, it is known that individual neurons

within a population demonstrate differences in their spiking activities in response to a given
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stimulus (i.e., display response heterogeneity) [11–13]. Theoretical studies have shown that, in

some circumstances, such heterogeneity benefits information transmission by increasing the

coding range [14–24]. Furthermore, correlations between neural activities can either increase

or decrease information transmission depending on their structure [4,8,9,25]. Additional com-

plexity as to how correlations influence information transmission arises because these are

highly plastic. Indeed, correlations can be regulated by multiple factors including attention

[26,27], single neuron firing properties (e.g., firing rate, response nonlinearities) [28–30], and

stimulus attributes (e.g., spatial extent, frequency content, intensity) [30–33] (see [34] for

review).

The vestibular system plays a vital role in generating reflexive behaviors such as the vestibu-

lar spinal and ocular reflexes, as well as our perception of self-motion and spatial orientation.

Information about self-motion is detected by the vestibular end organs from which peripheral

afferents directly synapse onto neurons within the vestibular nuclei [35]. A subclass of neurons

within the vestibular nuclei termed vestibular-only can easily be distinguished from other neu-

ral classes within the vestibular nuclei based on their lack of eye movement sensitivity. Eye

movement sensitive neurons within the vestibular nuclei project to the abducens nucleus and

mediate the vestibulo-ocular reflex (VOR) (see [36] for review) [37–39]. In contrast, vestibu-

lar-only neurons mediate other important functions including self-motion perception and the

control of vestibulo-spinal reflexes as they project to both the thalamus [40] and the spinal

cord [41,42].

To date, however, the neural representation of self-motion within the vestibular nuclei has

primarily been studied by single-unit and, in one case, multi-unit recordings during artificial

stimulation [43–46]. Specifically, vestibular-only neurons display high-pass tuning characteris-

tics with neural sensitivity increasing with increasing frequency and large phase leads (i.e., the

neural firing rate reaches its maximum before the stimulus; see [36] for review). In contrast,

the statistics of self-motion stimuli experienced during typical everyday activities (i.e., natural

self-motion stimuli) differ fundamentally from those of artificial stimuli [47,48] (see [49] for

review). Recent studies have shown that early vestibular pathways optimally encode natural

self-motion stimuli (afferents: [50]; vestibular nuclei: [44,45]; vestibular thalamocortical neu-

rons: [51]) (see [49,52] for review). Notably, because of both their tuning properties and trial-

to-trial variability, single vestibular-only neurons can optimally encode natural self-motion sti-

muli through temporal whitening [44,45]. However, these studies were based on single-unit

recordings. Thus, an open question remains as to how neural populations within the early ves-

tibular pathways represent natural self-motion stimuli.

Accordingly, here we used multi-site probes to record the simultaneous activities of indi-

vidual well-isolated vestibular-only neurons within the vestibular nuclei (henceforth referred

to as vestibular nuclei neurons) during both naturalistic and artificial sinusoidal self-motion

(see Materials and methods). We first investigated response heterogeneity. While vestibular

nuclei neurons displayed similar dynamic tuning to self-motion, inspection of their spike

trains revealed significant heterogeneity. Under sinusoidal stimulation, heterogeneity resulted

equally from both trial-to-trial variability (i.e., different spike trains are elicited from a given

neuron when presenting the same stimulus multiple times) and spiking variability across the

vestibular nuclei neural population (i.e., different spike trains are elicited from different vestib-

ular nuclei neurons during stimulation). In contrast, during naturalistic stimulation, heteroge-

neity primarily resulted from spiking variability. We next computed both signal and noise

correlations (i.e., correlations due to the common stimulus versus those between the trial-to-

trial variabilities of neural responses, respectively). Overall, while signal correlations were simi-

lar during both naturalistic and artificial stimulation, noise correlations were strikingly differ-

ent. Specifically, the mean noise correlation was significantly positive during naturalistic but
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not artificial stimulation. Then, using computational modeling incorporating both heteroge-

neity and correlation seen experimentally, we show that heterogeneity and noise correlations

during naturalistic stimulation are both beneficial for information transmission. Taken

together, our results provide the first evidence that neurons within early vestibular pathways

are adapted to the statistics of natural self-motion stimuli at the population level.

Results

The goal of this study was to investigate how neural populations within the vestibular nuclei

encode naturalistic self-motion. To address this question, we delivered stimuli to head-fixed

Macaca mulatta that were comfortably seated on a turntable (Fig 1A) while recording the

activities of vestibular-only neurons within the vestibular nuclei (Fig 1B). Our dataset com-

prised neural activities from 3 awake behaving animals for which we were able to record simul-

taneously from individual well-isolated single neurons during the highly dynamic self-motion

stimuli described below (49 single neurons in total: 11 from monkey D; 34 neurons from Mon-

key B; 4 neurons from Monkey O; 35 pairs in total: 6 from monkey D; 26 from Monkey B; 3

from Monkey O).

Neurons were classified as either type 1 (N = 33) or 2 (n = 16) depending on whether they

responded with increased firing rate to rotations towards the ipsilateral or contralateral sides,

respectively (see Materials and methods). We note that these correspond to ON and OFF-type

cells in other systems.

Self-motion stimuli consisted of rotations whose time course closely mimicked that

recorded while the animal performed natural behaviors (e.g., walking, jumping) [48]. These

stimuli are henceforth referred to as naturalistic (see Materials and methods and Fig 1C). For

comparison, artificial self-motion stimuli consisting of sinusoids with amplitude 15 deg/s at

frequencies 0.5, 1, 2, 3, 4, 5, 8, and 17 Hz were also used (Fig 1D). While naturalistic self-

motion stimuli contain a spectrum of frequencies and can reach large amplitudes (approxi-

mately 200 deg/s) and, as such, strongly differ from sinusoids that each only contain 1 fre-

quency and reach lower amplitudes (compare Fig 1C and 1D). Overall, the response profiles of

single vestibular nuclei neurons in our dataset to sinusoidal were similar to those previously

reported during both artificial and naturalistic stimulation as quantified by neural gain (Figs

1E, S1A and S1B) and phase (Figs 1F, S1C and S1D) [43–45,51]. These properties were consis-

tent across all 3 animals (S2 Fig). Moreover, models based on gain and phase in general cor-

rectly predicted neural responses during naturalistic and artificial stimulation (S3 Fig).

Vestibular nuclei neurons display heterogeneous spiking activities during

naturalistic and artificial stimulation

We first investigated how neural populations within the vestibular nuclei responded to natu-

ralistic versus artificial stimulation. During naturalistic stimulation (Fig 2A), we found that

spiking responses were heterogeneous. This response heterogeneity resulted not only from dif-

ferent neurons displaying different spiking patterns (i.e., across neuron variability), but also a

given neuron displaying different spiking patterns to repeated stimulus presentations (i.e., “tri-

als”): this is henceforth referred to as trial-to-trial or within neuron variability (Fig 2B).

Accordingly, we quantified the respective contributions of across neuron and within neuron

variability towards determining heterogeneity by computing the response–response coherence

[53] (see Materials and methods). The response–response coherence measures the similarity

between neural responses and ranges between 0 (both responses are uncorrelated) and 1 (both

responses are perfectly correlated up to a given time delay) [53]. We note that the coherence is

insensitive to phase differences between spike trains and can be thought of a frequency-
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Fig 1. Experimental setup and stimuli used in this study. (A) A schematic of the experimental setup. During the experiments, the

animal is head-fixed and seated comfortably on a turntable. (B) A schematic of early stages of the neural circuits involved in self-

motion perception. Vestibular afferents transmit head motion information to VO neurons in vestibular nuclei which in turn project

to spinal cord as well as thalamus and cortical areas and mediate postural reflexes and self-motion perception, respectively. A vector

array probe was used to record neural activity of multiple VOs simultaneously in vestibular nuclei. (C) Head velocity traces and

PLOS BIOLOGY Population coding of naturalistic self-motion

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002623 April 30, 2024 4 / 34

https://doi.org/10.1371/journal.pbio.3002623


dependent correlation coefficient magnitude. Furthermore, we note that there are many more

ways to combine activities across neuron than within neuron.

Overall, we found higher response–response coherence values when considering spiking

responses from a given neuron to repeated stimulus presentations (i.e., within neuron; Fig 2C,

turquoise) than when considering spiking responses from different neurons (i.e., across neu-

rons; Fig 2C, magenta). We next quantified the contributions of across and within neuron var-

iability to response heterogeneity (see Materials and methods). Overall, we found significantly

higher values across neurons Wilcoxon rank sum test (N = 41 neurons, p = 5.6 × 10−12;

Fig 2D), indicating that heterogeneity primarily results from across neuron variability.

We next investigated heterogeneity under artificial stimulation (Fig 3A) and obtained

markedly different results. Specifically, neural spiking activities were heterogeneous but to a lesser

extent than what was observed under naturalistic stimulation (compare Figs 2B and 3B). Quantifi-

cation of across and within neuron variability as quantified by coherence revealed higher values

than during naturalistic stimulation (compare Figs 2C, 3C, and S4). It is important to note that

the coherence curves shown in Fig 3C were obtained during 4 Hz sinusoidal stimulation. As such,

the peak at 4 Hz is expected as neurons modulated their firing rate in response to the stimulus

(Fig 3B). Coherence curves obtained during sinusoidal stimulation at other frequencies are shown

in S4 Fig. Interestingly, both within and across neuron variability made contributions to heteroge-

neity that were not significantly different from one another (Wilcoxon rank sum test, N = 40 neu-

rons, p = 0.099; Fig 3C). Qualitatively similar results (i.e., no significant difference between

heterogeneity computed either across or within neuron) were observed for all frequencies (S4 Fig)

as well as when pooling across stimulation frequencies (Wilcoxon rank sum test, N = 322,

p = 0.26, Fig 3D). This result shows that differences in the source of heterogeneity observed during

naturalistic and artificial self-motion were robust to stimulation frequency.

Correlations between vestibular nuclei neural activities differ during

naturalistic versus artificial stimulation

We next investigated correlations between vestibular nuclei neural activities. As mentioned

above, correlations can be separated between those that are due to the common stimulus (i.e., sig-

nal correlations) and correlations between the trial-to-trial variabilities of neural responses to

repeated stimulus presentations (i.e., noise correlations). It is important to consider both signal

and noise correlations since the relationship between these 2 measures (i.e., the correlation struc-

ture) is important for determining the effects of correlations on information transmission [8,9].

To quantify signal correlations (Fig 4A), we computed spike count sequences of pairs of

vestibular nuclei neurons over trials (i.e., repeated presentations of the same stimulus wave-

form) using a time window with given length (i.e., “timescale”). We then shuffled the response

across trials and then calculated Pearson’s correlation coefficients (Fig 4B; see Materials and

methods for more details) [54], while systematically varying the timescale (1 to 1,000 ms).

Fig 4C and 4D show signal correlations obtained during naturalistic and 4 Hz artificial stimu-

lation, respectively. In both cases, signal correlations tended to be positive for same type (i.e.,

type 1-type 1 and type 2-type 2) pairs and negative for opposite (i.e., type 1-type 2) pairs. This

power spectra of the naturalistic stimulus used in the study. (D) Head velocity traces and power spectra of artificial stimuli used in

the study. (E) Population-averaged gain for VO neurons during artificial stimuli (shown in shades of blue, similar to panel C; N = 42,

f = 0.5 HZ; N = 42, f = 1 HZ; N = 40, f = 2 HZ; N = 41, f = 3 HZ; N = 40, f = 4 HZ; N = 41, f = 5 HZ; N = 39, f = 8 HZ; N = 37, f = 17

HZ) and naturalistic stimulus (shown in red; N = 41). Error bars and the error band show 1 SEM for artificial and naturalistic

stimuli, respectively. (F) Population-averaged phase for VO neurons during artificial (shown in shades of blue, similar to panel C;

N = 42, f = 0.5 HZ; N = 42, f = 1 HZ; N = 40, f = 2 HZ; N = 41, f = 3 HZ; N = 40, f = 4 HZ; N = 41, f = 5 HZ; N = 39, f = 8 HZ; N = 37,

f = 17 HZ) and naturalistic stimulation (shown in red; N = 41). Error bars and the error band each show 1 SEM.

https://doi.org/10.1371/journal.pbio.3002623.g001
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Fig 2. Vestibular nuclei neural responses are highly heterogeneous across neurons in the population during naturalistic stimulus. (A) Right:

The entire waveform of naturalistic head velocity stimulus used in the study. Left: A 1 s snippet of the stimulus magnified to demonstrate the detailed

temporal dynamics of the stimulus. (B) Raster plots for 3 exemplar type I and 3 exemplar type 2 VO neurons during the same stimulus snippet in

panel A. The temporal scale bar is shared between panels A and B. (C) The population-averaged response–response coherence across neurons

(magenta) and trials (turquoise) (N = 41). The error band shows 1 SEM. (D) The population-averaged heterogeneity in VOs is significantly higher

across neurons than across trials (Wilcoxon rank sum test, N = 41, p = 5.6 × 10−12). We note that there are significantly more combinations across

neurons than within neurons. The data for this panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig

2D.mat,” “Fig 2D.m,” and associated “readme.txt”).

https://doi.org/10.1371/journal.pbio.3002623.g002
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Fig 3. Vestibular nuclei neural responses are heterogenous during artificial stimulation. (A) Right: Example artificial sinusoidal head velocity

stimulus (f = 4 Hz) used in the study. Left: A 3-cycle snippet of the stimulus. (B) Raster plot of 3 exemplar type I and 3 exemplar type 2 VO neurons

during the same stimulus snippet in panel A. The temporal scale bar is shared between panels A and B. (C) The population-averaged response–

response coherence across neurons (magenta) and trials (turquoise) during 4 Hz artificial stimulation. Inset: Boxplots showing within and across

neuron variability during 4 Hz artificial stimulation (Wilcoxon rank sum test, N = 40, p = 0.099). The error band indicates 1 SEM. (D) The

population-averaged heterogeneity in VOs is not significantly different across neurons and across trials (Wilcoxon rank sum test, N = 322, p = 0.26).

The data for this panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig 3D.mat,” “Fig 3D.m,” and

associated “readme.txt”).

https://doi.org/10.1371/journal.pbio.3002623.g003
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Fig 4. Signal correlations are similar during artificial and naturalistic stimulation. (A) Left: Schematic showing a hypothetical scenario in which the

activities of 2 neurons are modulated by a common signal, which gives rise to signal correlations as well as by independent noise sources. In this case,

because the noises are independent, there are no noise correlations. Right: Schematic showing a hypothetical scenario similar to the one described for

panel A except that a source of shared noise has been added, which will give rise to noise correlations. Such shared noise could in principle originate

from lateral connections as well as shared afferent input. (B) Methodology used to calculate signal correlation between the response of pair of VO
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is expected since type 1 and type 2 vestibular nuclei neurons respond with excitation to rota-

tions towards the ipsilateral and contralateral sides, respectively. In the case of naturalistic

stimulation, signal correlation magnitude was maximal for a timescale of approximately 250

ms, which corresponds to the correlation time of the stimulus (i.e., the time constant charac-

terizing the stimulus’ autocorrelation exponential decay) [45]. This is because the stimulus var-

ies maximally during that time. In the case of 4 Hz artificial stimulation, signal correlation

magnitude was maximal for a timescale of approximately 100 ms, which corresponds roughly

to the stimulus half-period. These results were expected as signal correlation magnitude will be

maximal on timescales for which the stimulus varies the most. Qualitatively similar results

were obtained for other frequencies (S5 Fig). Overall, signal correlations were similar during

both naturalistic and artificial stimulation (Fig 4E; two-sample t test, N = 861 pairs, p = 0.83).

We next quantified noise correlations (Fig 5A) by computing the Pearson’s correlation coef-

ficient between the residual spike counts (i.e., the sequences obtained by subtracting the mean

spike count across stimulus trials (Fig 5B; see Materials and methods for more details). Fig 5C

and 5D show noise correlations obtained during naturalistic and 4 Hz artificial stimulation,

respectively. Qualitatively different results were obtained in that, while noise correlations tended

to be positive during naturalistic stimulation and were thus on average positive (Fig 5C), they

instead tended to be both positive and negative during 4 Hz artificial stimulation, such that

their average was zero (Fig 5D). Qualitatively similar results were obtained for other frequencies

(S6 Fig). Thus, overall noise correlations were significantly more positive during naturalistic

than during artificial stimulation (two-sample t test, N = 35, p = 3.2 × 10−5; Fig 5E).

It is important to note that changes in noise correlations were most likely not due to differ-

ences in amplitude between naturalistic and artificial stimulation, as noise correlations were

also positive on average when restricting our analysis to segments of naturalistic stimulation

with low amplitude (S7 Fig). Moreover, changes in noise correlations were not due to differ-

ences in firing rate, as neurons displayed similar firing rates during artificial and naturalistic

stimulation (S8 Fig). As such, we hypothesize that increased noise correlations are caused by

the characteristic frequency spectrum displayed by naturalistic but not artificial stimuli. This is

further discussed below. Finally, noise correlations were significantly more positive during

naturalistic stimulation relative to artificial stimulation for a wide range of timescale (all time-

scales between 7 ms and 1 s; p< 0.03 in all cases).

Increased noise correlations during naturalistic stimulation benefits

population coding by heterogeneous vestibular neural populations

Our results so far show that the spiking activities of vestibular nuclei neurons are more hetero-

geneous during naturalistic than during artificial stimulation. Such changes were accompanied

neurons. The unit activity of cell 1 and cell 2 from Fig 2B is shown. Top: For each cell, the number of spikes is counted for a given timescale (e.g., 250

ms) and spike count sequences are generated. Bottom: The spike count sequence for the second neuron is shuffled to exclude the effect noise

correlations due to simultaneous common input. The signal correlation for the timescale is calculated by computing Pearson’s correlation coefficient

between the latter spike count sequences. (C) Signal correlations as a function of timescale during naturalistic stimulus (N = 820 pairs). The solid and

dashed lines represent the correlations for the same-type and opposite-type pairs, respectively. The thick solid and dashed lines are the average values

of the correlations for the same-type and opposite-type pairs, respectively. (D) Same as in C except it was calculated for an artificial stimulus (f = 4 Hz;

N = 780 pairs). (E) Boxplots showing the signal correlation values during artificial (all frequencies) and naturalistic stimuli. Signal correlations during

artificial and naturalistic stimuli are not significantly different (two-sample t test, N = 861 pairs, p = 0.83). For artificial stimuli, the timescale was

chosen to be a quarter to a half-period of the sinewave period, where the signal correlations were maximum in magnitude on average. For naturalistic

stimulus, the signal correlations were calculated for a 100 ms timescale that was consistent with the time scale of the stimulus and where signal

correlations were highest in magnitude. In panels C and D, while the average values were calculated using all the pairs, only 75 traces of same and

opposite-type pairs were shown for visualization purposes. Note that data were computed over different pairings during naturalistic and artificial

stimulation, this is because not all pairs were held during both protocols. The data for this panel are available from the Borealis database (https://doi.

org/10.5683/SP3/FXFZ2J) (see files “Fig 4E.mat,” “Fig 4E.m,” and associated “readme.txt”).

https://doi.org/10.1371/journal.pbio.3002623.g004
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Fig 5. Noise correlations are significantly higher during naturalistic stimulus than during artificial stimulation. (A) Left: Schematic showing a

hypothetical scenario in which the activities of 2 neurons are modulated by a common signal, which gives rise to signal correlations as well as by

independent noise sources. In this case, because the noises are independent, there are no noise correlations. Right: Schematic showing a hypothetical

scenario similar to the one described for panel A except that a source of shared noise has been added, which will give rise to noise correlations. Such

shared noise could in principle originate from lateral connections as well as shared afferent input. (B) Methodology used to calculate noise correlation
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by changes in noise correlations, which were more positive during naturalistic stimulation.

Such a change in noise correlations might seem surprising at first glance as previous studies

have shown that this can increase redundancy and thus impair information transmission [55].

It should be however noted that these assumed a homogeneous population, whereas our

results show that this is not the case for vestibular nuclei neurons.

Accordingly, in order to gain understanding as to how heterogeneity and correlations influ-

ence population coding, we built a computational model of vestibular nuclei neural population

that incorporated their known tuning properties (Fig 6A; see Materials and methods). We

then considered both homogeneous and heterogeneous populations and systematically varied

both signal and noise correlations (see Materials and methods). Each neuron was modeled

using a transfer function as well as a leaky integrate-and-fire (LIF) model for spike generation.

We used the same naturalistic stimulus waveform as for our experimental data which was mul-

tiplied by a covariance matrix to generate correlated signal inputs (see Materials and methods).

Furthermore, a set of white Gaussian noise was generated and correlated using a noise covari-

ance matrix. We then quantified the mutual information from the model neural population’s

performance at reconstructing the detailed time course of the stimulus. Our assumption that

downstream brain areas decode information about the stimulus’ detailed time course from VN

neural populations is justified as previous studies have shown that the activity of vestibular

neurons in VPL receiving direct input from vestibular nuclei neurons faithfully follows the

naturalistic stimulus’ detailed time course [51].

Overall, we found that, for given signal correlations, increasing noise correlations led to dif-

ferential effects on information transmission for homogeneous (Fig 6B and 6C) and heteroge-

neous (Fig 6B and 6D) populations. For homogeneous populations, the highest information

was obtained when signal correlations were maximal and noise correlations near zero (Fig

6C). Increasing noise correlations led to a decrease in mutual information irrespective of signal

correlations by increasing redundancy. This result is consistent with those of previous studies

[55]. In contrast, for heterogeneous populations, the highest information was obtained when

signal correlations are near zero and noise correlations highest (Fig 6D). As such, for given sig-

nal correlations, increasing noise correlations led to increased information for heterogeneous

populations but instead led to decreased information for homogeneous populations (Fig 6B).

It is important to note that we took into account the fact that the slope of the linear relation-

ship between noise and signal correlations (i.e., the “correlation slope”) can strongly influence

information transmission [9,56,57]. Specifically, our experimental data shows that there was a

significantly positive correlation slope during naturalistic but not artificial stimulation (S9

Fig). Thus, the correlation slope for heterogeneous populations was similar to that obtained

during naturalistic stimulation while, for homogeneous populations, the correlation slope was

instead similar to that obtained during artificial stimulation. Overall, the positive correlation

slope reduced information transmission but did not affect the qualitative nature of our results

between the response of pair of VO neurons. The spike count sequences for the same cells (cell 1 and cell 2 in Fig 2B and 2D) as well as trial averaged

spike counts using the same temporal window (timescale) are shown. For each cell, the residual spike count is calculated by subtracting the trial-

averaged spike counts from raw spike counts. The noise correlation coefficient is calculated by computing the Pearson’s correlation coefficient of the

residual spike count sequences. (C) Noise correlations as a function of timescale during naturalistic stimulus (N = 35 pairs). The solid and dashed lines

represent the correlations for the same-type and opposite-type pairs, respectively. The thick solid and dashed lines are the average values of the

correlations for the same-type and opposite-type pairs, respectively. (D) Same as in C except during 4 Hz artificial stimulation (N = 35 pairs). (E)

Boxplots showing noise correlation values during artificial (all frequencies) and naturalistic stimuli. Noise correlations during naturalistic stimuli are

significantly higher than that of during artificial stimuli (two-sample t test, N = 35 pairs, p = 3.2 × 10−5). The timescales at which the noise correlations

were computed were the same as those used above for signal correlations. Note that data were computed over different pairings during naturalistic

and artificial stimulation, this is because not all pairs were held during both protocols. The data for this panel are available from the Borealis database

(https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig 5E.mat,” “Fig 5E.m,” and associated “readme.txt”).

https://doi.org/10.1371/journal.pbio.3002623.g005
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Fig 6. Noise correlations benefit population coding in heterogenous neural populations but reduce information in homogenous neural populations. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs6and7:Pleaseverifythatallentriesarecorrect:(A)

Schematic of a model decoding head velocity information from population of simulated VO neurons with a given correlation structure. For a given mean noise

(ρnoise) and signal (ρsignal) correlation, a narrow (homogenous; σ = 0.03) or wide (heterogenous; σ = 0.15) distribution of correlation coefficients as well as the

corresponding correlation matrices are generated. The correlation matrices are used to generate correlated signal and noise inputs to spike generator

component (i.e., the LIF model), the output of which are correlated with the desired correlation structure. The generated spikes are used to estimate a set of

kernel functions that minimize MSE between the stimulus and its estimation. The mutual information is then calculated from the decoded signal. (B)

Information gain rate as function of mean noise correlation for heterogenous (ρsignal = 0) and homogenous conditions for mean signal correlation ρsignal = 0.6.

Error bands indicate 1 SEM (N = 40 simulations). Note that the error bands are quite small. (C) Mutual information rate gain as a function of mean signal and

noise correlation for homogenous population coding. The information rate gain is calculated by comparing the information in a given condition to the

minimum information decoded across all simulated conditions (i.e., ρnoise = 0.6, ρsignal = 0 under homogenous conditions) (N = 40 simulations). (D) Same as in

C, except the simulations are done for a heterogenous population activity (N = 40 simulations). LIF, leaky integrate-and-fire; MSE, mean squared error; SEM,

Standard error of the mean; VO, vestibular-only.

https://doi.org/10.1371/journal.pbio.3002623.g006
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(i.e., that information transmission was overall higher for heterogeneous populations;

S10 Fig). Moreover, both coding fraction and correlation coefficients exhibited higher values

for heterogenous populations (S11 Fig).

Why do increased noise correlations benefit information transmission for heterogeneous

but not homogeneous neural populations? To answer this important question, we plotted the

reconstruction error as a function of population size (Fig 7A). Overall, in both cases, recon-

struction error decreased initially more slowly and then faster with increasing population

(Fig 7A). As such, the curves were fitted using 2 different power laws for low and high popula-

tion sizes (see Materials and methods). Overall, the power law exponent for high population

sizes was significantly more negative for a heterogeneous than for a homogeneous population

(p = 3.9 × 10−34), whereas the opposite was observed for power law coefficients concerning low

population sizes (p = 2.2 × 10−29; Fig 7B and 7C). Moreover, the “critical population size” at

which this transition occurred was lower for heterogeneous populations (p = 2.6 × 10−24;

Fig 7D). Thus, for large enough population size (e.g., N = 128), the reconstructed stimulus is

more similar to the original stimulus for the heterogeneous population (Fig 7E).

To understand why the reconstruction error is smaller in the heterogeneous case for suffi-

ciently large population sizes (e.g., compare orange and green curves in Fig 7A for a popula-

tion size of 100), we considered the respective contributions of individual model neurons (see

Materials and methods). Specifically, the reconstruction error can be written as a sum of “vari-

ance” (i.e., within neuron) and “covariance” (i.e., across neurons) terms. While variance terms

are positive by definition, covariance terms can be negative and thus contribute to reducing

the overall error. Our results show that the distribution of covariance terms was more skewed

towards negative values for heterogeneous populations and was thus negative on average

(Fig 7F, 7G, and 7H). In contrast, the distribution of covariance terms for the homogeneous

population was more symmetric and displayed an average that was closer to zero (Fig 7F, 7G,

and 7H). Quantification of mean variance terms revealed overall higher variances for heteroge-

neous as compared to homogeneous populations (p = 2.1 × 10−8, Kruskal–Wallis test; Fig 7I).

Thus, the covariance terms better subtract from the variance terms for the heterogeneous case,

thereby leading to a lower reconstruction error (p = 2.1 × 10−8, Kruskal–Wallis test; Fig 7I).

An important question is then, why is the distribution of covariance terms more skewed for

heterogeneous than for homogeneous neural populations? Overall, this implies that the recon-

struction errors of individual neurons tend to be more negatively related to each other in het-

erogeneous populations. This is because signal correlations were on average zero and noise

correlations positive to obtain maximal information for heterogeneous populations (Fig 6D).

Thus, signal correlations were sometimes negative while noise correlations were sometimes

positive, which greatly benefits information transmission by effectively reducing variability

beyond that achievable when noise correlations are zero [9]. In contrast, for homogeneous

populations, maximal information was obtained when signal correlations were positive and

noise correlations near zero on average (Fig 6C). In this case, variability is not as effectively

reduced, leading to reconstruction errors that are more positively related and higher than for

the heterogeneous case.

Discussion

Summary of results

Here, we investigated how vestibular nuclei neural populations within the vestibular nuclei

represent naturalistic as opposed to artificial self-motion stimuli. We found that, while vestibu-

lar nuclei neurons displayed similar dynamic tuning during both stimulation conditions, their

spiking activities were heterogeneous (i.e., spike trains elicited by the same stimulus were
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Fig 7. Heterogenous populations predict stimulus time course more accurately than homogenous populations. (A) Estimation error

as a function of population size for populations with optimum correlation structure for heterogenous (ρnoise = 0.6, ρsignal = 0) and

homogenous (ρnoise = 0, ρsignal = 0.6) conditions. Error bands indicate 1 SEM. Each curve is fitted with a double power law functions over

the low and high population sizes, indicated with dashed lines. (B) The magnitude of power law exponents below the knee population

sizes is significantly higher for heterogenous conditions (Wilcoxon rank sum test, N = 1,000 simulations, p = 2.2 × 10−29). The data for this
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different from one another). Under artificial stimulation, heterogeneity resulted from trial-to-

trial variability in individual neurons as well as from variability across neurons. In contrast,

under naturalistic stimulation, heterogeneity resulted primarily from variability across neurons

and was higher than that observed during artificial stimulation. We then investigated correla-

tions between vestibular nuclei neural activities. While signal correlations were similar during

both stimulation conditions, noise correlations were significantly more positive during natural-

istic stimulation. Further computational modeling revealed that heterogeneity and noise corre-

lations during naturalistic stimulation were both beneficial for information transmission. Taken

together, our results demonstrate for the first time that neurons in early vestibular pathways are

adapted to the statistics of natural self-motion stimuli at the population level.

Stimulus-dependent noise correlations in vestibular nuclei neural

populations: Implications for coding

Our findings show that vestibular nuclei neural populations display qualitatively different cor-

relation structures under naturalistic and artificial stimulation. Specifically, during naturalistic

stimulation, noise correlations were significantly positive and had a beneficial effect on infor-

mation transmission when taking into account response heterogeneity among vestibular

nuclei neurons. In contrast, under artificial stimulation, noise correlations were on average

close to zero and had minimal effect on information transmission. This latter result is consis-

tent with the findings of the only prior study to have investigated population coding in ascend-

ing vestibular pathways which focused solely on artificial low frequency stimuli [46]. Thus,

taken together, our results establish that noise correlations between vestibular nuclei neural

activities are stimulus-dependent.

How noise correlations impact population coding of natural versus artificial stimuli has

been investigated in other sensory systems, including the visual, auditory, and electrosensory

systems. Unlike the coding properties of individual neurons which can strongly differ between

conditions, these results of these prior studies have shown that distribution of noise correla-

tions and their effects on population coding are generally similar. Notably, on average, noise

correlations are close to zero and have, at best, minimal effects on information transmission

during conditions designed to evoke more natural stimulation (visual: [58,59]; auditory:

[60,61]; electrosensory: [62,63]) as well as in artificial stimulation conditions (see [1,8,9,64] for

review).

panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig 7B.mat,” “Fig 7B.m,” and associated

“readme.txt”). (C) The magnitude of power law exponents above the knee population sizes is significantly lower for heterogenous

conditions (Wilcoxon rank sum test, N = 1,000 simulations, p = 3.9 × 10−34). The data for this panel are available from the Borealis

database (https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig 7C.mat,” “Fig 7C.m,” and associated “readme.txt”). (D) The knee

populations size for heterogenous conditions is significantly lower than that of homogenous condition (Wilcoxon rank sum test, N = 1,000

simulations, p = 2.6 × 10−34). The data for this panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see

files “Fig 7D.mat,” “Fig 7D.m,” and associated “readme.txt”). (E) Stimulus and reconstructed stimulus from the same heterogenous and

homogenous conditions as in 7A (N = 128). (F) The distribution of covariance terms of the covariance matrices computed from

reconstruction error signals during the same heterogenous and homogenous conditions as in 7A. (G) Mean of the covariance terms for

heterogenous condition is significantly lower than that of homogenous condition (Wilcoxon rank sum test, N = 1,000 simulations,

p = 1.9 × 10−6). The data for this panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig 7G.

mat,” “Fig 7G.m,” and associated “readme.txt”). (H) The skewness of the distribution for the heterogenous and homogenous conditions

(Wilcoxon rank sum test, N = 1,000 simulations, p = 1.8 × 10−158). The heterogenous population is skewed towards negative values and

therefore has negative mean value. The data for this panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J)

(see files “Fig 7H.mat,” “Fig 7H.m,” and associated “readme.txt”). (I) Summed variance terms (Var.), summed covariance terms (Cov.),

and MSE for covariance matrices computed from reconstruction error signals for heterogenous and homogenous conditions. All

quantities compared are significantly different than each other (Wilcoxon rank sum test, N = 1,000 simulations, p = 5.3 × 10−7). The data

for this panel are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see files “Fig 7I.mat,” “Fig 7I.m,” and

associated “readme.txt”). MSE, mean squared error.

https://doi.org/10.1371/journal.pbio.3002623.g007
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At first glance, these findings may appear to be at odds with our present results that have

demonstrated positive noise correlations, which are significant under naturalistic self-motion

stimulation and benefit information transmission. However, it should be emphasized that, the

conditions used in these prior studies did not evoke fully natural stimulation. For example,

prior studies of the visual system used stimuli that were natural in the spatial domain, but not

in the temporal domain. This is because sequences of natural images were played in a pseudo-

random fashion with a given image only presented for a short time (100 to 200 ms) [58,59]. As

a result, the temporal dynamics of the stimuli used did not resemble those experienced during

natural everyday behaviors, which could contribute to the differences observed in these prior

studies versus our present results. Moreover, in the case of the auditory and electrosensory sys-

tems, the natural stimuli used displayed frequency contents that were much higher (>10 kHz)

than that of natural self-motion stimuli used in the current study (0 to 20 Hz) (see [49] for

review), which may also contribute to the observed differences as the greater frequency bands

would then have to be normalized to the biologically relevant range. Further studies are needed

to test these predictions.

It should be further noted that one feature of natural auditory and electrosensory stimuli,

the time-varying amplitude or envelope which carries important information [65,66], tends to

contain much lower temporal frequencies (<100 Hz) [67,68] that better overlap with that of

natural self-motion stimuli and thus could elicit noise correlations. We speculate that results

similar to our own will be obtained when investigating population coding of natural sound

envelopes within ascending auditory and electrosensory pathways. Further studies are needed

to test these predictions as our current understanding of natural envelope coding in the audi-

tory and electrosensory systems is based on single-unit recordings (see, e.g., [66,69]).

Finally, the statistics of natural stimuli change on multiple timescales, such that sensory sys-

tems must continuously adapt in order for coding to remain optimal [70–72]. Several studies

have shown that population coding adapts to changes in natural stimulus statistics across sen-

sory modalities (visual: [73]; auditory: [72]). However, how population coding of naturalistic

self-motion stimuli adapts to changes in statistics has not been investigated to date. We predict

that both heterogeneity and noise correlations should adapt to natural self-motion stimulus

statistics to optimize coding. Future studies are needed to test these predictions.

What is the origin of noise correlations among vestibular nuclei neurons

during naturalistic versus artificial stimulation?

Our results show that noise correlations are significantly positive during naturalistic but not

artificial self-motion stimulation. An open question is thus: Why are noise correlations in

early vestibular pathways stimulus-dependent? Previous studies have shown that correlation

magnitude is strongly dependent on response nonlinearities [29]. Accordingly, one possibility

is that stimulus-dependent noise correlations result from naturalistic and artificial stimuli dif-

ferentially eliciting response nonlinearities in vestibular nuclei neurons. However, naturalistic

self-motion stimuli display higher amplitudes than artificial self-motion stimuli (see [49] for

review). Therefore, in the present study, stronger response nonlinearities would have been

elicited during naturalistic versus artificial stimulation, resulting in decreased rather than

increased correlation magnitude. Thus, the potential explanation that the observed stimulus

dependence of noise correlation magnitude is due to response nonlinearities cannot explain

our experimental findings.

Another potential explanation for the experimentally observed stimulus dependence of

noise correlations in early vestibular pathways is that vestibular nuclei neurons receive differ-

ential synaptic input during naturalistic and artificial stimulation. Specifically, it is conceivable
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that the relative balance between excitation and inhibition, which is critical towards determin-

ing correlation magnitude (see [34] for review), differs between both stimulation conditions.

In this context, increased noise correlation magnitude during naturalistic stimulation could

result from increased excitation due to better activation of gap junctions between neighboring

vestibular nuclei neurons [74,75], which would increase synchrony. However, the fact that ves-

tibular nuclei neurons display similar response dynamics to both artificial and naturalistic self-

motion stimuli [45,51] (Fig 1D) suggests that this is not the case.

Alternatively, differential synaptic input could be due to activation of feedback from cortical

areas onto vestibular nuclei neurons [76] during naturalistic stimulation. This later hypothesis

is supported by the fact that recent results have shown that vestibular sensitive neurons within

the posterior ventral lateral (VPL) area of the thalamus that project to cortex display different

response dynamics to naturalistic and artificial self-motion stimuli [51]. Specifically, the activi-

ties of these neurons faithfully follow the time course of naturalistic but not artificial stimuli.

Further studies are needed to understand the nature of the mechanisms mediating changes in

noise correlations within the vestibular nuclei neural populations during naturalistic and arti-

ficial self-motion stimulation.

Coding of self-motion by vestibular nuclei neural populations:

Implications for self-motion perception

In addition to the observed differences in noise correlations, our present results show that ves-

tibular nuclei neurons display heterogeneities in their spiking activities under naturalistic and

artificial stimulation. Spiking heterogeneity has been observed ubiquitously across systems

and species [77–81] and is thought to be beneficial for information transmission [15,18,22–

24,82–84]. Computational modeling has revealed that higher information rates are consis-

tently observed for heterogeneous populations irrespective of correlation structure, which

occurs in addition to the beneficial effects of positive noise correlations mentioned above.

Thus, increased noise correlations observed during naturalistic self-motion stimulation consti-

tute an adaptation to natural stimulus statistics such as to increase information transmission

by heterogeneous vestibular nuclei neural populations. As such, our results provide the first

evidence that population coding within early vestibular pathways is adapted to natural stimu-

lus statistics by increasing information transmission via the joint effects of heterogeneity and

noise correlations.

We showed that changes in noise correlations are not due to differences in amplitude

between naturalistic and artificial stimuli. Rather, they suggest that these changes are due to

the characteristic frequency spectrum of natural self-motion stimuli. Further studies using sti-

muli where the frequency spectrum is systematically varied are needed to test this hypothesis.

Importantly, the fact that noise correlations were significantly higher during naturalistic stim-

ulation for a wide range of timescales shows robustness. Ultimately however, whether

increased information due to heterogeneity and noise correlations is useful to the organism

will depend on how information transmitted by VO neural populations are decoded by down-

stream brain areas. This is further discussed below. We moreover note that our model consid-

ered pairwise interactions between neural activities as well as tuning properties of VO neural

populations. It is conceivable that other aspects of tuning (e.g., dynamic nonlinearities) as well

as higher order interactions could potentially further influence information transmission [9].

Further studies are needed to test these predictions.

Vestibular-only neurons within the vestibular nuclei project directly to the VPL area of the

thalamus (VPL) and are thus a key input to the posterior thalamocortical vestibular pathway

[40]. As mentioned above, VPL neural activity faithfully follows the detailed time course of
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naturalistic but not artificial self-motion stimuli [51]. This finding implies that information

transmitted about the stimulus’ detailed time course by vestibular nuclei neural populations is

likely decoded by target neurons in the VPL. In turn, neurons in VPL project to multiple corti-

cal areas such as the parietoinsular vestibular cortex (PIVC), the ventral intraparietal (VIP)

cortex, area 2v of the intraparietal sulcus, and area 3a in the sulcus centralis [76,85–87]. In par-

ticular, integration of vestibular with extravestibular information in both PIVC and VIP plays

a key role in our perception of self-motion and spatial orientation [88–90].

To date, vestibular neurons within both PIVC and VIP have only been tested using artificial

stimuli [91–94]. Thus, how these neurons respond to natural self-motion is not known. We

speculate that increased vestibular information transmitted by vestibular nuclei neural popula-

tions during naturalistic stimulation is decoded by such cortical areas to improve self-motion

perception relative to artificial stimulation. Specifically, we predict that vestibular perceptual

detection (i.e., the minimum stimulus amplitude that can be detected) and discrimination (i.e.,

the minimum change in stimulus amplitude that can be detected) thresholds should be signifi-

cantly lower during naturalistic than during artificial self-motion stimulation. Further work is

needed to test these predictions as all previous studies of vestibular perception have used artifi-

cial stimuli (see, e.g., [95–99]).

Materials and methods

Ethics statement

All procedures including surgeries, experiments, and housing of the animals were approved by

the McGill University Animal Care Committee (protocol #4096) and in accordance with the

guidelines of the Canadian Council on Animal Care. Experiments were conducted on 2 male

(Monkey D aged 8 years, 7.1 kg; Monkey O aged 6 years, 6.3 kg) and 1 female (Monkey B,

aged 10, 11.3 kg) rhesus macaques (Macaca mulatta). The animals were transferred to labora-

tories where extracellular recordings were conducted in a 2-h session for the experiments.

After the experiment, the animals were returned to their housing units.

Surgical procedure

Aseptic surgeries in preparation for extracellular recording and eye movement measurement

were performed as described previously [44,51,100]. Briefly, animals were pre-anesthetized

with ketamine hydrochloride (15 mg/kg im) and injected with buprenorphine (0.01 mg/kg

im) and diazepam (1 mg/kg im) to provide analgesia and muscle relaxation, respectively. Load-

ing doses of dexamethasone (1 mg/kg im) and cefazolin (50 mg/kg iv) were administered to

minimize swelling and prevent infection, respectively. Anticholinergic glycopyrrolate (0.005

mg/kg im) was also preoperatively injected to stabilize heart rate and to reduce salivation, and

then every 2.5 to 3 h during surgery. During surgery, anesthesia was maintained using isoflur-

ane gas (0.8% to 1.5%), combined with a minimum 3 l/min (dose adjusted to effect) of 100%

oxygen.

Heart rate, blood pressure, respiration, and body temperature were monitored throughout

the procedure. During the surgical procedure, a titanium post for head immobilization and a

titanium recording chambers that allowed access to the vestibular nucleus (VN) were fastened

to each animal’s skull with titanium screws and dental acrylic over the abducens nucleus

(−23.85 mm posterior from bregma and 2 mm lateral from midline) [101]. Craniotomy was

performed within the recording chamber to allow electrode access to the brain stem. An

18-mm diameter eye coil (3 loops of Teflon-coated stainless-steel wire) was implanted in 1 eye

behind the conjunctiva [102]. Following surgery, we continued dexamethasone (0.5 mg/kg im;

for 4 days), anafen (2 mg/kg day 1, 1 mg/kg on subsequent days), and buprenorphine (0.01

PLOS BIOLOGY Population coding of naturalistic self-motion

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002623 April 30, 2024 18 / 34

https://doi.org/10.1371/journal.pbio.3002623


mg/kg im; every 12 h for 2 to 5 days). In addition, cefazolin (25 mg/kg) was injected twice

daily for 10 days. Animals recovered in 2 weeks before any experimenting began.

Data acquisition

During the experiment, animals were head-fixed and seated comfortably on a primate chair

mounted on a motion platform that delivered head motion stimuli during passive whole-body

rotation (pWBR). For electrophysiological recordings, a neural probe (NeuroNexus vector

array, Ann Arbor, Michigan, United States of America) with 32 recording sites was used to col-

lect extracellular recording data from multiple individual neurons at a time (Shank thickness

75 μm; area of each recording site 177 μm2; vertical distance between sites 50 μm; horizontal

distance between sites 43.3 μm; see S12A Fig). The probe was inserted in a guide tube and

directed towards the vestibular nuclei. The angular velocity and gaze position signals were

measured using a gyroscope and a magnetic search coil, respectively, and the signals were low

pass filtered at 125 Hz and sampled at 1,000 Hz. Extracellular recording data were band-pass

filtered at 300 to 3,000 Hz, sampled at 30 kHz, and collected via Cerebus Neural Signal Proces-

sor (Blackrock Systems).

Experimental paradigm

Localization of vestibular nuclei was done relative to the abducens nucleus based on the dis-

charge characteristic of the abducens neurons—the “singing beehive” sound—during sponta-

neous eye movements. To identify vestibular-only neurons within the vestibular nuclei,

isolated cells were tested for vestibular sensitivity and lack of eye movement sensitivity by

training the animals to perform smooth pursuit, saccades, and vestibulo-ocular reflex cancella-

tion (VORc) prior to the recordings. Specifically, a fixed target was displayed at the center of a

screen in front of the animal. After the fixation period, saccadic eye movements were elicited

via the presentation of a target at positions ±10˚, ±20˚, and ±30˚. Smooth pursuit movements

were elicited by moving a target sinusoidally on the screen with a span of ±30˚.

Each recorded neuron’s firing rate was then quantified for different eye positions as done

previously and only neurons for which there was no significant correlation between firing rate

and eye position were retained [44]. The monkeys performed VOR by fixating on a fixed target

at the center of the screen during 0.5 Hz sinusoidal pWBR. Moreover, the animals performed

VORc during 0.5 Hz pWBR while fixating on a target on the screen which moved synchro-

nously with the primate chair and animal. Recordings were initiated after isolating at least 2

vestibular nuclei neurons based on lack of sensitivity to eye movements as described below.

Stimulus protocol

Following the characterization of the neurons, an interval of 20 s was used to record the resting

discharge activity of the neurons. Next, sinusoidal stimuli with maximum angular velocities of

15 deg/s and frequencies of 0.5, 1, 2, 3, 4, 5, 8, and 17 Hz were delivered to the animal. Each

stimulus was presented at least for a minimum of 10 cycles (i.e., trials). Neural responses to

sinusoidal were used for characterization of vestibular nuclei neurons as well as the study of

population coding during artificial self-motion. Furthermore, at least 4 repetitions (i.e., trials)

of naturalistic stimuli with a maximum head velocity of 200 deg/s and maximum acceleration

of 14,700 deg/s2 in each direction was delivered. Naturalistic stimuli used here are a 60 s snip-

pet of a recording of horizontal angular velocity from naturally behaving rhesus macaques

[47,48].

We note that the maximum amplitude of the naturalistic stimulus was higher than that of

the artificial sinusoidal stimuli irrespective of frequency. However, the actual amplitude of
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each frequency component of the naturalistic self-motion stimulus was lower than that of the

artificial sinusoids (i.e., 15 deg/s; compare lower panels of Fig 1C and 1D). As such, the effec-

tive signal-to-noise ratio for each frequency is then expected to be lower during naturalistic as

compared to during artificial self-motion stimulation, which would then give rise to lower

coherence values overall as observed (e.g., compare Figs 2C and 3C).

Spike sorting

All of the data presented in this paper consisted of well-isolated single units that were recorded

on non-overlapping sites of the probe. As such, unit activities were sorted using MATLAB cus-

tom-made code as previously done for single neurons recording [44,51]. Specifically, we used

voltage amplitude thresholding and visual inspection to detect the spiking activity from the

background noise activity.

To assess the quality of sorted spikes and to evaluate the occurrence of type I and type II

errors, involving incorrectly including noise spikes (those not belonging to a given neuron’s

cluster) and excluding spikes from the given neuron’s cluster, respectively, we quantified the

Lratio and isolation distance for all the neurons [103]. This is important as including noise

spikes or excluding spikes from a given neuron can affect the computation of the signal and

noise correlation coefficients. Lratio quantifies how well the spike cluster of a given neurons is

separated from the spike cluster of other neurons or noise events [104]. Briefly, we calculated

the energy of the spikes which is the sum of squared voltage values of the spikes over the inter-

val from 1 ms before to 1.3 ms after the peak (please refer to [103,104] for complete

description).

Spikes from a given cluster were normalized by their respective energy and formed a matrix

with rows indicating spike waveform samples, and columns indicating the individual spike

waveforms. The first principal component (PC) along with the energy of the spike for each

neuron was used to form a feature matrix, containing energy and first PC vectors of all the

neurons. The Mahalanobis distances of each spike, i, from a given cluster C was

D2

i;C ¼ ðxi � mCÞ
T
S� 1

C ðxi � mCÞ, where xi, μc, and SC are the feature vector, average of vectors

in cluster C, and inverse covariance matrix of the vectors in cluster C. The value of L for cluster

C was calculated as LðCÞ ¼
P

i=2Cð1 � CDFw2
df
ðD2

i;CÞÞ, in which CDFw2
df

is the cumulative func-

tion of the χ2 distribution with df = 2N, where N is the number of neurons simultaneously

recorded in a given session. Note that only spikes not belonging to cluster C were used in this

calculation. The value of L(C) was then normalized by the number of spikes in cluster C to

obtain Lratio for that cluster.

Low values of Lratio are associated with better sorted spikes and values less than 0.05 are

associated with well-separated clusters and lesser type I and type II errors [103]. We note that

all the Lratio values in our dataset were all lower than 0.05 (S12A, S12B, and S12G Fig), indicat-

ing robust isolation of neurons and high fidelity in sorting of the spikes. The isolation esti-

mates how distant the cluster spikes are from the other cluster spikes and noise [105]. If the

cluster has nC spikes, the isolation is the distance of the nc-th closest noise spike jnC
;D2

jnC
;C.

Higher isolation distance values correspond to lower type I errors [103] and clusters with isola-

tion values exceeding 50 are deemed as effectively separated [105]. We note that the isolation

values computed over our dataset were all above 100 (S12C–S12E Fig).

Finally, we quantified isolation using other standard measures such refractory period viola-

tions (i.e., the % of inter-spike intervals whose value was lesser or equal than 2 ms) and cluster

overlap. Overall, refractory period violations were very low (<0.4% in all cases) (S12F Fig).

Clusters for simultaneously recorded neuron pairs displayed minimal overlap (<4% in all
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cases; S12H Fig). Together, these results indicate very good if not excellent isolation of simulta-

neously recorded single units.

Data analysis

Data was imported into MATLAB (MathWorks, Natick, Massachusetts, USA) programming

environment for analysis. Binary sequences of unit activities were generated by setting the

sequences at a given time to 1 if a spike happened at that time, and to 0, otherwise, and sam-

pled at 1,000 Hz using custom-written codes for replaying neuronal recordings and sorting

action potentials. The head position signal was calculated by integrating the head velocity sig-

nal. The eye position signal was computed as the difference between gaze and head position

signals. The firing rate of the neurons was estimated by applying an optimal lowpass Kaiser fil-

ter to unit activities [106]. A neuron was categorized as a vestibular-only neuron if its response

to pWBR stimulus did not depend on the eye movement (saccade as well as smooth pursuit),

and if the response to VOR and VORc were identical.

Each neuron was also characterized as either type I or type II if it displayed increased firing

rate in response to head movements towards the ipsilateral or contralateral sides, respectively.

In practice, this was quantified by computing the phase between the firing rate and a sinusoidal

head velocity stimulus at 1 Hz (see below). Neurons whose phases were near 0 were classified

as type I, whereas neurons whose phases were near 180˚ were classified as type II.

Linear systems analysis

Neural gain and phase values were computed for vestibular nuclei neurons in response to sinu-

soidal stimuli using traditional system identification techniques. We assumed that vestibular

nuclei neurons responded to a sinusoidal stimulus, s(t), as fr(t) = g.s(t-td) + b, where fr(t) is the

estimated firing rate of the neuron; g is the neural gain; td is latency, the time by which the

response of the neurons is leading the stimulus; and b is the bias. Fr(t) was estimated by low-

pass filtering the unit activities with a cut-off frequency that exceeded the frequency of the

stimulus by 0.1 Hz [106]. The response of the neuron across at least 10 trials were used to esti-

mate b, td, and g. td was estimated as the time at which the cross correlation of s(t) and fr(t)

had maximum absolute value; next, g and b were obtained by performing a linear regression

between fr(t) and s(t-td). The response phase lead, p, was obtained as p = 360˚tdf, where f is the

frequency of the stimulus. To calculate the gain and phase during naturalistic stimulation, we

computed GðfÞ ¼ PsrðfÞ
PssðfÞ

, where Psr(f) is the cross power spectral density between stimulus and

firing rate (i.e., the Fourier transform of the cross-correlation function between stimulus and

firing rate), and Pss(f) is the power spectral density of the stimulus (i.e., the Fourier transform

of the stimulus autocorrelation function). The gain and phase of the neuron in response to nat-

uralistic stimulus were characterized as |G(f)|and ∠G(f) which denote magnitude and phase
of the complex number G(f), respectively. The gain gives the number by which one
needs to multiply the component of the stimulus at frequency f to get the corresponding
component of the neural response. In contrast, the phase gives the number by which one
must shift the stimulus component at frequency f to align with the corresponding compo-
nent of the neural response. We note that G(f) is the transfer function between the stimu-
lus and the neural response, which is then the number by which the Fourier transform
of the stimulus must be multiplied to obtain the Fourier transform of the neural response.
We further note that multiplication in the frequency domain corresponds to a convolution
in the time domain, which is the most general linear transformation. For the case of a sine-
wave, convolution reduces to multiplication by a constant (i.e., the gain) and shifting by a
time corresponding to the phase multiplied by the cycle period. Thus, the gain and phase
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values computed during naturalistic stimulation are a generalization of those computed
for single sinewaves.

VO neural response properties to both artificial and naturalistic stimulation have been

extensively studied. In particular, these neurons display similar high-pass dynamics to both

naturalistic and artificial stimulation with gain and phase lead increasing as a function of fre-

quency [43,45,51] (see [36,49] for review). We thus quantified the responses of single VO neu-

rons to naturalistic and sinusoidal stimulation by computing the gain and phase as a function

of frequency (S1 Fig). Overall, our results were in good agreement with those published previ-

ously (e.g., compare S1A and S1C Fig to Fig 3F and 3G of ref. [51], respectively for naturalistic;

compare S1B and S1D to Fig 2B of ref. [36] for sinewaves). We next tested whether models

based on gain and phase could predict responses to naturalistic and artificial stimuli for single

neurons. The model was fitted to the first 50% of the data (i.e., gain and phase were computed

as described above) and was tested on the remaining 50% of the data. In the case of naturalistic

stimulation, a static sigmoidal nonlinearity was added to account for rectification and satura-

tion as done previously [51]. Overall, the model accurately predicted responses to both natu-

ralistic and artificial stimuli as quantified by R2, which is the correlation coefficient squared

between the predicted and actual firing rate responses (S3 Fig).

Quantification of heterogeneity

We quantified the heterogeneity of response of neurons across trials and across populations by

calculating the response–response coherence of the neurons. This is because the response–

response coherence is only limited by the variability of responses [53]. This measure ranges

between 0 (i.e., both responses are uncorrelated) and 1 (i.e., both responses are equal up to a

given time delay and/or proportionality constant). To compute the response–response coherence

for a given neuron across trials (i.e., repetitions of the stimulus), we used CRRðfÞ ¼
j<PRiRj ðfÞ>i6¼j j

2

ð<PRiRi ðfÞ>Þ
2 ,

where Ri and Rj is the response of the neuron in trials i and j. Here, the average is performed over

stimulus trials, such that h. . .i ¼ 1

N

PN
i¼1

. . ., where N is the number of trials (i.e., the number of

stimulus repetitions). We have h. . .ii6¼j ¼
2

NðN� 1Þ

PN
i¼2

Pi� 1

j¼1
. . .. The response–response coherence

of 2 neurons was calculated as CRRðfÞ ¼
j<PRiRj ðfÞ>j

2

<PRiRi ðfÞ><PRjRj ðfÞ>
, where Ri is the responses of the first

neuron in trial i and Rj is the response of the second neuron in trial j.

All spectral quantities (i.e., power-spectra, cross-spectra) were estimated using a multitaper

technique with 8 Slepian functions [107] as done previously [43]. Heterogeneity was quantified

as 1-CRR. This is because, as mentioned above, a response–response coherence of 1 would

imply that responses are essentially similar (i.e., no heterogeneity), whereas a response–

response coherence of 0 would imply that responses are dissimilar as they are uncorrelated

(i.e., heterogeneous). Values were averaged over trials (4–5) for both naturalistic and artificial

stimulation. In the case of artificial stimulation, consecutive stimulus cycles were concatenated

to form a “trial” such that the number is equal to that of naturalistic stimulation. When com-

puting the heterogeneity during naturalistic stimulation, we averaged the heterogeneity values

over 0 to 5 Hz since the stimulus power primarily dominated in the frequency range. For artifi-

cial stimuli, we adopted the heterogeneity value at the stimulus frequency (i.e., averaged the

heterogeneity over a 1 Hz window centered at the stimulus frequency).

Correlation analysis

The correlation between the activities of a pair of neurons was quantified by computing spike

count correlations [26]. To compute spike count correlations, a time window with given length
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(i.e., “timescale”) was used to compute spike counts from each neuron’s activity. The

sequences of spike counts were generated for each neuron by counting the spikes within the

temporal window. This procedure produced a pair of spike count sequences for a given pair.

To eliminate the effect of noise correlations arising from the simultaneous recordings, we ran-

domly shuffled the spike count sequences such that no spike count sequence of the neuron

corresponded to the spike count sequence of the other neuron in the same trial (i.e., the so-

called “shuffle predictor”) [54]. Signal correlations were then computed by calculating the

Pearson’s correlation coefficients between these 2 spike count sequences (after shuffling).

For computing the noise correlations, residual spike count sequences were calculated by

subtracting the original spike counts in a given trial from their average across trials for all trials.

Noise correlations were computed by calculating Pearson’s correlation coefficients of the

residual spike counts obtained in successive time windows with 50% overlap. We note that for

calculation of signal correlations, we used both simultaneous and non-simultaneous pair of

neurons, whereas for noise correlations, only simultaneously recorded pairs of neurons were

considered. Values were averaged over trials (4–5) for both naturalistic and artificial stimula-

tion. In the case of artificial stimulation, consecutive stimulus cycles were concatenated to

form a “trial” such that the number is equal to that of naturalistic stimulation.

Model

We simulated a population of vestibular nuclei neurons using linear-nonlinear cascade models

[50,108]. The firing rate response of the neuron is given by rðtÞ ¼ TðrlinðtÞÞ in which rlin(t) is

the linear estimation neural response, and T(�) is the nonlinear relation that relates rlin(t) to

actual firing rate calculated from data. We note that we did not estimate the nonlinear function

explicitly as this function was merged into an LIF model and its effect is reflected in parameters

of LIF model. Parameters a, b, and c relate to maximum firing rate and neural sensitivity.

rlinðtÞ ¼ hðtÞ∗sðtÞ þ r0 in which h(�) is the linear kernel of the model and the impulse response

of the transfer function HðfÞ ¼ PsrðfÞ
PssðfÞ

, where Pss(f) is the power spectrum of the stimulus and

Psr(f) is the cross-spectrum between stimulus and binary sequence. H(f) was approximated

with a transfer function similar to that of canal afferents with 2 poles and 2 zeros for each neu-

ron as HðsÞ ¼ ksðsþ1=T1Þ

ðsþ1=TcÞðsþ1=T2Þ
; where s = 2πif and k, Tc, T1, and T2 are parameters of the model

[50]. r0 is the baseline firing rate which was calculated during baseline activity for each neuron

and s(t) denotes the stimulus.

Power spectra and cross-spectrum quantities are computed using pwelch and cpsd func-

tions in MATLAB. In practice, since we used inputs with naturalistic statistics, we fit the trans-

fer function to the population averaged bode plot obtained for gain and phase during

naturalistic stimuli. For controlled simulations, we kept the transfer functions similar across

the population and used the following parameters: T1 = 0.0175 s; T2 = 0.027 s; Tc = 5.7 s;

k = 2.1 (spk/s)/(deg/s).

To generate spiking activity, we fed the output of the linear transfer function to an LIF

model [109]. The membrane potential, V(t), of the simulated neurons is calculated by solving

Cm
dVðtÞ

dt ¼ � gVðtÞ þ Ibias þ kscðtÞ þ sncðtÞ, if Vðt0Þ � y! VðtÞ ¼ 0ðt0 � t � tþ trefÞ. Cm, g,

Ibias, k, σ, θ, and tref are membrane capacitance, membrane conductance, the bias current,

input gain in the model, standard deviation of the noise, spike threshold, and refractory

period, respectively. sc(t) denotes the input to the LIF model and nc(t) are the correlated noises

which are defined below.

We obtained the distribution of signal and noise correlation coefficients and populated pos-

itive definite covariance matrices accordingly. We approximated the distribution of signal and
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noise correlations coefficients with normal distribution and populated the covariance

matrices in a way that the distribution of the correlation coefficients followed the normal

distribution. For homogenous population activity, we assumed σ = 0.03, whereas for heter-

ogenous population activity, we assumed σ = 0.15, where σ is the standard deviation of the

population. For populating large correlation matrices with values drawn from normal dis-

tribution with a given standard deviation (i.e., heterogeneity versus homogeneity) and

mean value (mean value of signal and noise correlations), we used an algorithm based on

vines and extended onion method [110]. We used this method as populating the off-diago-

nal elements of the covariance matrices with values randomly driven from an intended nor-

mal distribution resulted in non-positive definite covariance matrices for large populations

(e.g., N>10 neurons). Specifically, sc(t) = Lsig s(t), where sðtÞ ¼ ½s1ðtÞ; . . . ; sNðtÞ� is the out-

put of the transfer function, H(f), and Lsig is the Cholesky factor of the signal covariance

matrix. Moreover, nðtÞ ¼ Ln½x1ðtÞ . . . xnðtÞ�
T
—where Ln is Cholesky decomposition of the

noise covariance matrix and ξi(t) for i = 1, . . ., N are white gaussian noise with mean zero

and unit variance. For our simulations, we used Cm = 1 nF, g = 0.4 μS, Ibias = 7.3 nA,

k = 0.025 nA (deg/s)/(spk/s), σ = 2 nA, θ = 0, and tref = 2 ms with which the resting dis-

charge, coefficient of variation, variability, neural gain and phase of the simulated neurons

matched that of population average values.

The correlated signal input was used as the signal component of the LIF model, whereas

the correlated noise input was used as the noise component of the LIF model. We generated

covariance matrices so that we could vary the mean of the off-diagonal correlation coeffi-

cients as well as their standard deviations systematically. Higher mean values corresponded

to higher levels of noise and signal correlations. For simulations during heterogeneous con-

ditions, the standard deviation values were 3 to 4 times higher than that of homogenous

populations.

Previous studies have shown that the slope of the relationship between noise and signal cor-

relations (i.e., the “correlation slope”) can strongly influence information transmission [56,57].

Because the correlation slope was different during naturalistic and artificial stimulation,

changes in the slope were included in the simulations. Specifically, if the correlation matrices

used to simulate signal and noise correlation in the spiking activity were the same, the slope of

the correlations would be 1. Note that mean signal and noise correlation could be adjusted by

subtracting or adding the off-diagonal correlation coefficients by appropriate value while keep-

ing the slope 1 and leaving the standard deviation of the correlation coefficient distribution

unchanged.

To obtain the desired correlation slope observed in data during naturalistic and artificial

head motion, we used a similar method as in [57]. Specifically, we first generated correlated

noise and signal matrices, nc(t) and sc(t) mentioned above, with the correlation slope of 1, and

then randomly shuffled a portion of noise or signal vectors where each vector corresponds to

noise and signal input to a simulated neuron in the LIF model. This operation ensured the

slope would decrease without changing the correlation coefficient distribution.

Shuffling all the vectors results in a slope of 0 on average, which is similar to that of during

artificial head motion (S9 Fig). In contrast, shuffling half of the vectors results in correlation

slope of 0.5 on average, which is similar to that of during naturalistic head motion (S9 Fig).

The correlation slope evaluated by performing a linear least squares fit. The results shown in

the main figures during heterogeneous conditions were obtained using a correlation slope

value that matched that of the data during naturalistic stimulation, whereas those obtained

during homogeneous conditions were obtained using a correlation slope value that matched

that of the data during artificial stimulation (S9 Fig).
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Stimulus reconstruction and decoding

We used the stimulus reconstruction technique in order to estimate the stimulus waveform

from the model neurons’ spiking activities [43,111]. The estimated stimulus is obtained by

convolving each neural activity with a kernel: sestðtÞ ¼
PN

i¼1
ðki∗riÞðtÞ. Here, ri(t) is the firing

rate and ki(t) is the optimal kernel of the neuron i. The kernels are obtained from the following

equation:

K1ðfÞ

..

.

KNðfÞ

0

B
B
@
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Pr1r1
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;

where Ki(f) is the Fourier transform of ki(t), Prirj
ðfÞ is the cross-spectrum between ri(t) and

rj(t), and Psri
ðfÞ is the cross-spectrum stimulus, s(t), and ri(t).n(t) = sest(t)−s(t) is the noise in

the reconstruction and mean squared error (MSE) is defined as ε2 = <n2(t)>. Signal-to-noise

ratio (SNR) is computed via SNRðfÞ ¼ PssðfÞ
PnnðfÞ

in which Pss(f) and Pnn(f) are the power spectrum

of stimulus and reconstruction noise, respectively. The MSE is given by: ε2 = hn2(t)i, where

h. . .i denotes an average over time. The mutual information rate is then given by [112]:

MI ¼
Z 20

0

df log2½1þ SNRðf Þ�;

where the limits of integration correspond to the frequency range of natural self-motion [49].

Information rate values were normalized by the lowest value obtained, which was for a homo-

geneous population for zero mean signal and highest mean noise correlations (bottom right

corner of Fig 5C). We used the coding fraction to assess the goodness-of-fit for a given stimu-

lus estimation [43,111,112]. The coding fraction was computed as 1 � ε
s
, where σ is the stan-

dard deviation of the stimulus.

Covariance analysis

To gain intuition as to how noise correlations benefit population coding for neuronal popula-

tions with heterogenous signal and noise correlation structures, we looked at the contributions

of individual terms towards determining the mean square error. Specifically, one can write an

expression for the MSE as:

ε2 ¼ hð
XN

i¼1

erriÞ
2
i ¼

XN

i¼1

herr2

i i þ 2
XN

i¼2

Xi� 1

j¼1

herrierrji;

where N is the population size and erri is the contribution of neuron i to the error, which is

given by erri ¼
sðtÞ
N � ðki∗riÞðtÞ. It can be easily seen that the equation above is then a sum of

variance and covariance terms. We fit the MSE as a function of population size curves with 2

different power law functions over different ranges [47]. The critical population size was

defined as the value of population size for which both power laws intersect.

Supporting information

S1 Fig. Neural gains for naturalistic (A) and artificial (B) stimulation as well as phases for nat-

uralistic (C) and artificial (D) stimulation. For each panel, curves from individual neurons are

shown in gray. A few individual neurons are shown in color (cyan, yellow, magenta, green).
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The population-averages traces during naturalistic and artificial stimulation are show by thick

red and blue lines, respectively. Shaded areas and error bars indicate 1 SEM. N = 41, naturalis-

tic stimulus; N = 42, f = 0.5 HZ; N = 42, f = 1 HZ; N = 40, f = 2 HZ; N = 41, f = 3 HZ; N = 40,

f = 4 HZ; N = 41, f = 5 HZ; N = 39, f = 8 HZ; N = 37, f = 17 HZ.

(TIF)

S2 Fig. Neural gains for naturalistic (A) and artificial (B) stimulation as well as phases for nat-

uralistic (C) and artificial (D) stimulation. Population-averaged curves are plotted for each ani-

mal. The shaded areas demonstrate 1 SEM. Monkey O, N = 4; Monkey B, N = 34; Monkey D,

N = 11. The bands show 1 SEM.

(TIF)

S3 Fig. Top: Example naturalistic (A) and artificial (B) sinusoidal head velocity stimulus (f = 4

Hz) used in the study. (C and D) Time-dependent firing rates for 3 exemplar type I and II neu-

rons (gray band) as well as predicted firing rate from the best-fit model (black curves). The

insets in A and B shows the goodness-of-fit of the models during naturalistic (N = 41) and arti-

ficial (N = 322) stimulation, respectively. Note that the model was fit to 50% of the data and

the goodness-of-fit quantified on the remaining 50%.

(TIFF)

S4 Fig. Neural activity is heterogenous in response to sinusoidal stimulation with differen-

tial frequency. The population-averaged response–response coherence, as well as the corre-

sponding heterogeneity (inset), is shown across trials (blue) and neurons (magenta) for

stimulation sinusoidal stimuli with the frequency of 0.5 Hz (N = 42 neurons; S4A Fig), 1 Hz

(N = 42 neurons; S4B Fig), 2 Hz (N = 40 neurons; S4C Fig), 3 Hz (N = 41 neurons; S4D Fig), 5

Hz (N = 41 neurons; S4E Fig), 8 Hz (N = 39 neurons; S4F Fig), and 17 Hz (N = 0.37 neurons;

S4G Fig). Across all frequencies, the contribution of trial-to-trail variability and the variability

across neurons to heterogeneity was not significantly different from each other (Wilcoxon

rank sum test, insets: 0.5 Hz, p = 0.86, N = 42; 1 Hz, p = 0.59, N = 42; 2 Hz, p = 0.62, N = 40; 3

Hz, p = 0.23, N = 41; 5 Hz, p = 0.25, N = 41; 8 Hz, p = 0.39, N = 39; S1G, p = 0.49, N = 37). The

bands show 1 SEM. The data for all panels are available from the Borealis database (https://doi.

org/10.5683/SP3/FXFZ2J) (see files “FigS4X.mat,” “FigS4X.m,” and associated “readme.txt,”

where “X” corresponds to the panel letter).

(TIF)

S5 Fig. Signal correlation as a function of timescale during sinusoidal stimulation with dif-

ferent frequencies: S5A Fig: 0.5 Hz, N = 861 pairs; S5B: 1 Hz, N = 861 pairs; S5C: 2 Hz,

N = 780 pairs; S5D: 3 Hz, N = 820 pairs; S5E: 5 Hz, N = 820 pairs; S5F: 8 Hz, N = 741 pairs;

and S5G: 17 Hz, N = 666 pairs. The blue and purple lines in each panel represent the correla-

tions for the same-type and opposite-type pairs, respectively. The thick solid blue and dashed

purple lines are the average values of the correlations for the same-type and opposite-type

pairs, respectively. While the average values were calculated using all the pairs, only 75 traces

of same and opposite-type pairs were shown for visualization purposes.

(TIF)

S6 Fig. Noise correlation as a function of timescale during sinusoidal stimulation with dif-

ferent frequencies: S6A Fig, N = 28 pairs: 0.5 Hz; S6B: 1 Hz, N = 29 pairs; S6C: 2 Hz, N = 35

pairs; S6D: 3 Hz, N = 35 pairs; S6E: 5 Hz, N = 34 pairs; S6F: 8 Hz, N = 33 pairs; and S6G: 17

Hz, N = 33 pairs. The blue and purple lines in each panel represent the correlations for the

same-type and opposite-type pairs, respectively. The thick solid blue and dashed purple lines

are the average values of the correlations for the same-type and opposite-type pairs,
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respectively.

(TIF)

S7 Fig. Signal (A) and noise (B) correlations during naturalistic stimulation when only using

naturalistic stimulus segments for which amplitude is below the threshold. The bottom panels

show the % of the naturalistic stimulus that were used for each threshold. Overall, no signifi-

cant changes were seen when systematically varying the threshold (A: p> 0.76; B: p> 0.99

between naturalistic stimuli with different thresholds, p = 1.4 × 10−13 between naturalistic and

artificial stimuli for noise correlations; Wilcoxon rank-sum tests). Signal and noise correla-

tions are also shown during artificial stimulation for comparison (blue). The data for all panels

are available from the Borealis database (https://doi.org/10.5683/SP3/FXFZ2J) (see files

“FigS7X.mat,” “FigS7X.m,” and associated “readme.txt,” where “X” corresponds to the panel

letter).

(TIF)

S8 Fig. Firing rates during naturalistic (red) and artificial (blue) stimulation. No significant

differences were observed (p> 0.64 in all cases, one-way ANOVA with Bonferroni correc-

tion). N = 41, naturalistic stimulus; N = 42, f = 0.5 HZ; N = 42, f = 1 HZ; N = 40, f = 2 HZ;

N = 41, f = 3 HZ; N = 40, f = 4 HZ; N = 41, f = 5 HZ; N = 39, f = 8 HZ; N = 37, f = 17 HZ. The

data for this figure are available from the Borealis database (https://doi.org/10.5683/SP3/

FXFZ2J) (see files “FigS8.mat,” “FigS8.m,” and associated “readme.txt”).

(TIF)

S9 Fig. Noise correlations as a function of signal correlations during naturalistic (A) and arti-

ficial (B) stimulation. There was a significant relationship between both during naturalistic

(r = 0.50, p = 1.5 × 10−78; Pearson’s correlation coefficient) but not artificial stimulation (r =

−0.01, p = 0.11; Pearson’s correlation coefficient). The dashed line shows the best-fit straight

line (A: slope = 0.45, R2 = 0.26; B: slope = −0.01, R2 = 3.1 × 10−4).

(TIF)

S10 Fig. (A) Information rate as a function of mean signal and mean noise correlations for

the homogeneous case. For given values of mean signal and noise correlations, we assumed

that signal and noise correlations were independent of one another as seen experimentally dur-

ing artificial stimulation (S9B Fig). (B) Information rate as a function of mean signal and

mean noise correlations for the heterogeneous case where signal and noise correlations are

independent of one another (i.e., the correlation slope is zero). (C) Information rate as a func-

tion of mean signal and mean noise correlations for the heterogeneous case where the relation-

ship between signal and noise correlations has the same slope as that seen experimentally

during naturalistic stimulation (S9A Fig). (D) Information gain rate as function of mean noise

correlation for heterogenous (ρsignal = 0) and homogenous (green) conditions for mean signal

correlation ρsignal = 0.6. For heterogeneous conditions, we compared values obtained when sig-

nal and noise correlations were independent of one another (purple) to those obtained when

signal and noise correlations were related as seen experimentally during naturalistic stimula-

tion (orange). Error bands indicate 1 SEM (N = 40 simulations). It is seen that information

rates were lower when signal and noise correlations were related, consistent with previous

studies, but were still higher than those obtained in the homogeneous condition.

(TIF)

S11 Fig. (A) Coding fraction as a function of mean signal and mean noise correlations for the

homogeneous case. For given values of mean signal and noise correlations, we assumed that

signal and noise correlations were independent of one another as seen experimentally during
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artificial stimulation (S9B Fig). (B) Coding fraction as a function of mean signal and mean

noise correlations for the heterogeneous case where the relationship between signal and noise

correlations has the same slope as that seen experimentally during naturalistic stimulation

(S9A Fig). (C) Correlation coefficients as a function of mean signal and noise correlations for

the homogenous conditions. As for the simulations in panel A, we assumed that signal and

noise correlations were independent as seen experimentally. (D) Correlation coefficients as a

function of mean signal and noise correlations for the heterogenous conditions. As for the

simulations in panel B, we assumed that signal and noise correlations were correlated with the

same slope as seen experimentally. As seen for the information rate (S10A Fig), coding fraction

and correlation coefficient values increase with higher signal correlations and lower noise cor-

relations when during homogenous condition. In contrast, as seen for the information rate

(S10C Fig), coding fraction and correlation coefficient values increase with higher noise corre-

lations and lower signal correlations when during heterogenous population activity.

(TIF)

S12 Fig. (A) Schematic of the multi-channel probe and signals recorded on separate sites (14

in red and 32 in cyan, together with adjacent sites; schematic reproduced from manual for

V1x32-Poly2-15mm-50s-177 manual from NeuroNexus website, https://neuronexus.com/).

Also shown are extracellular spike waveforms aligned to time of occurrence (thin curves) and

population averages (thick curves). (B) Plot in feature space of both units. The features in x-

axis and y-axis are the energy of spikes and first principal component of feature matrix, respec-

tively, as describe in methods section. Red and blue dots represent scatter plots for spikes of

first and second units obtained from channels 14 and 24 on the probe, respectively. The L-

ratio values for each neuron are indicated in the figure. (C) Scatter plot of spike clusters of the

first unit versus noise in feature space. Energy of spikes in channels 1 and 4 are used for this

plot. The isolation distance computed between cluster and noise spikes is 762 for this unit. (D)

Scatter plot of spike clusters of the second unit versus noise in feature space. Energy of spikes

in channels 1 and 3 are used for this plot. The isolation distance computed between cluster and

noise spikes is 158 for this unit. In both panels C and D, a third of spikes are shown randomly

for visualization purposes. (E) Histogram of isolation distance calculated for all units (N = 41).

All values were above 100 indicating good if not excellent separation between cluster and noise

spikes. (F) Histogram of refractory violation for single neurons in the population (N = 41). (G)

Lratio calculated for all the neurons in the population (N = 41). All values are less than 0.05. (H)

Percentage overlap between clusters of neurons in pairs (similar to that in panel B; N = 35).

(TIF)
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