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An open‑source tool for automated 
human‑level circling behavior 
detection
O. R. Stanley 1, A. Swaminathan 1,4, E. Wojahn 1,4, C. Bao 1, Z. M. Ahmed 2 & K. E. Cullen  1,3*

Quantitatively relating behavior to underlying biology is crucial in life science. Although progress in 
keypoint tracking tools has reduced barriers to recording postural data, identifying specific behaviors 
from this data remains challenging. Manual behavior coding is labor-intensive and inconsistent, while 
automatic methods struggle to explicitly define complex behaviors, even when they seem obvious 
to the human eye. Here, we demonstrate an effective technique for detecting circling in mice, a 
form of locomotion characterized by stereotyped spinning. Despite circling’s extensive history as a 
behavioral marker, there currently exists no standard automated detection method. We developed 
a circling detection technique using simple postprocessing of keypoint data obtained from videos of 
freely-exploring (Cib2−/−;Cib3−/−) mutant mice, a strain previously found to exhibit circling behavior. 
Our technique achieves statistical parity with independent human observers in matching occurrence 
times based on human consensus, and it accurately distinguishes between videos of wild type mice 
and mutants. Our pipeline provides a convenient, noninvasive, quantitative tool for analyzing circling 
mouse models without the need for software engineering experience. Additionally, as the concepts 
underlying our approach are agnostic to the behavior being analyzed, and indeed to the modality of 
the recorded data, our results support the feasibility of algorithmically detecting specific research-
relevant behaviors using readily-interpretable parameters tuned on the basis of human consensus.

Observable actions serve as noninvasive readouts of underlying biological facts—e.g. injury, disease, gene expres-
sion, or neural function. This recognition sits at the core of behavioral sciences. Behavioral analysis has histori-
cally relied, and largely still relies, on labor-intensive manual behavior coding of real-time or videotaped behavior 
as its gold standard. Unfortunately, especially when analyzing long sessions or large numbers of sessions, manual 
coding can suffer due to rater variability, fatigue, or quirks in precise definitions1–3. Though recent advances in 
computer vision4 and miniaturized sensors5,6 have made quantitative data increasingly available, classifying 
kinematic data into specific behaviors remains a central challenge. Critically, behaviors which seem clear-cut 
to a human observer can in reality be noisy and subjective. As a result, while algorithmic behavior detection 
holds the potential for rapid, objective quantification, automated methods face difficulty in explicitly defining 
complex behaviors.

As one example, rodent behavioral neuroscience studies frequently report a repetitive spinning behavior 
known as ’circling’. The utility of circling as a behavioral marker, and the resultant need for objective quantifica-
tion of the behavior, has been recognized for more than 50 years7. Examples include studies of basal ganglia 
damage7–12 as well as genetically engineered models of Alzheimer’s Disease13,14 and autism15–17. Additionally, a 
large number of mutant mouse strains displaying circling behavior display dysfunction of the vestibular system, 
which in healthy animals contributes to maintaining balance, steadying gaze, and keeping track of the body 
within the environment. These include mutants that exhibit loss of vestibular hair cells18, disrupted development 
of stereocilia19,20, or disrupted structural development of the inner ear21,22.

However, despite its long history as a behavioral marker, the existing literature lacks a standard, quantita-
tive definition of circling. Rather, studies often report the simple presence or absence of circling5,23–25. Studies 
which quantify frequency of occurrence rely on manual coding and use disparate definitions such as complete 
rotations26,27, sequences of complete rotations13, or 270-degree turns during which the body travels a minimum 
distance28. Older studies which deployed video analysis relied on tracking the center of mass of a mouse against a 
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high-contrast background9,10 and could thus apply limited analysis, whereas more recent work has incorporated 
commercial and open source tracking solutions but focused on total amount of rotation29,30 rather than circling 
per se. Accurate and objective quantification of behavioral parameters such as the frequency of occurrence, 
duration of bouts of circling behavior, and velocity of movements would facilitate comparison between specific 
etiologies. This inconsistency reduces the utility of circling as a tool for comparisons across models and setups. 
Thus, there is a need for a broadly-accessible, quantitative, automated tool for the detection of circling behavior.

Here, we present a technique for detecting circling behavior by tuning algorithmic parameters based on con-
sensus occurrence times among human observers. Specifically, we assessed (Cib2−/−;Cib3−/−) dual knockout mice, 
a mouse strain we and others have previously reported exhibiting circling31–33. We track the snout and base of 
the tail in mice using the open-source software package DeepLabCut4 (“DLC”), then compare the performance 
of several behavioral detection algorithms which analyze characteristics of the animals’ paths. By identifying 
the behavioral parameters that result in labels most closely matching human behavioral coding, our technique 
achieves statistical equivalence to individual observers’ independent labels at matching consensus times. Our 
methodology thus provides a simple, inexpensive process for recording and quantifying mouse circling behavior. 
Furthermore, the success of our technique suggests its applicability for use in comparing against other etiologies 
and in detecting and quantifying other research-relevant behaviors.

Results
The goal of the present work was to build and validate a tool to automatically identify mice exhibiting circling 
behavior during free exploration. Figure 1 illustrates an overview of our data collection and analysis pipeline. We 
first recorded a set of videos of five wild-type (C57BL/6) mice and five (Cib2−/−;Cib3−/−) dual knockout mice in 
six different recording conditions (enumerated in Methods: “Data generation”). To establish a standard against 
which to compare the quality of automatic circling detection, three human observers independently marked 
times at which circling behavior occurred in two subsets of these videos: (1) a test set containing all videos of 
one mutant mouse and one wild type mouse and (2) an equally-sized training set randomly selected from the 
remaining videos, evenly split between mutant and wild type. These behavior labels were compared to identify 
consensus instances in which all observers marked circles sufficiently close to one another (0.1 s or less), which 
subsequently served as our gold standard (see Methods: “Gold standard development”).

All videos not used in the test set were used to train and evaluate a computer vision model for tracking two 
keypoints on the mouse body, the tip of the snout and base of the tail. Once trained, the computer vision model 
was run on the manually-screened training set videos to generate tracking information. After minimal preproc-
essing of the resulting keypoint position data, we applied three progressively more sophisticated algorithms 
intended to identify instances of circling behavior. Parameters for each algorithm were optimized to match 
consensus times as closely as possible as measured by F1 score on the human-scored training set (see Methods: 
“Algorithm development and parameter search”). After this optimization, the trained computer vision model and 
finalized detection methods were applied to the manually-screened test set to establish whether these methods 
generalized to completely novel videos. Finally, to establish whether this large amount of data was required to 
achieve human-level performance at detecting circling behavior, we trained computer vision models on varied 
subsets of our overall dataset and applied our most performant algorithm to the test set.

Comparison and consensus among human observers
To obtain a standard against which to measure our behavioral labeling algorithms, we examined the degree of 
consensus among human labels of circling behavior. To this end, first we selected one mutant mouse and one 
wild-type mouse at random to form a held-out test set. All videos of these two animals (4 videos in each of 6 
conditions; 24 videos each animal) manually screened for instances of circling independently by three observers, 
who were instructed to mark times at which they noted complete rotations during bouts of circling behavior 
but not during normal exploratory behavior shared by wild-type mice (e.g. turning around after reaching the 
edge of the arena). This process was repeated for 24 randomly selected mutant videos and 24 randomly selected 
wild-type videos from among the 188 not included in the test set. Videos were not labeled with information 
regarding mouse genotype.

We hypothesized that human observers marking occurrences of circling behavior would show consistent 
agreement. To assess this, we calculated F1 scores for pairs of observers, treating one as ground truth for another 
(Fig. 2A). Contrary to our expectation, we found that although pairwise F1 scores were similar on average (0.53, 
0.52, and 0.49), the distribution of those scores varied widely enough that one pair differed significantly from 
both others (pair CA, p = 3.5E−2 and 1.4E−4 versus pairs AB and BC).

We next examined whether human performance differed between our training and test sets as well as how 
well independent labels matched ultimate consensus circling occurrence times, i.e., cases in which all three 
observers indicated a circle sufficiently close to one another. Independent observers scored against each other 
produced an average F1 score of 0.51 (95% CI 0.47–0.55) on the training set and 0.53 (0.41–0.62) on the test 
set. (not significantly different, p = 0.65; Fig. 2B, Independent vs Independent) When all observers were scored 
against a group consensus gold standard, average F1 scores were similar to pairwise scoring: 0.51 (0.44–0.57) 
and 0.53 (0.38–0.65) on the training and test sets, respectively. (p = 0.75; Fig. 2B, Independent vs Consensus) 
We observed no significant difference between these alternative gold standards (p = 0.20). Consensus times were 
used for subsequent tuning and evaluation of automated behavior detection methods.

Developing and testing algorithmic circling detection methods
Accurately tracking an animal’s position, or even the position of many body parts, is insufficient on its own to 
establish the behavior an animal is exhibiting. Rather, this raw data must be processed once collected. To this 
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end, we applied several candidate algorithms for detecting circling behavior using keypoint tracking data after 
minimal preprocessing. In our case, this preprocessing consisted of setting a threshold on frame-by-frame 
keypoint label jumps equal to a velocity of 40× the median length of the labeled tail-snout vector per second, a 
value selected to be high enough that no plausible physical process could produce it. Datapoints exceeding this 
limit were replaced with simple linear interpolation.

Each behavior detection algorithm first detects instances in which the path of the mouse’s snout intersects 
itself (see example timelapse, Fig. 3A) to analyze as candidate circling occurrences. Importantly, not all inter-
sections are the result of circling—many will be produced by normal exploratory head movements made by 
both mutant and wild-type animals. Each algorithm therefore attempts to exclude false positives (i.e., instances 
incorrectly marked as circling) using one or more features of the animal’s path between the points of collision.

We observed that the underlying distribution of putative circling parameters (duration, rotation, and size) 
could be well described by an initial decay for parameter values near zero and a roughly normal peak. We thus 
sought to model the distribution of each of these parameters as the sum of an exponential and a Gaussian distri-
bution (see Methods: “Algorithm development and parameter search”). Figure 3B illustrates these distributions 
and fits for two example videos. Bounds outside of which collisions were excluded as circles were parameterized 
by considering how far, and in what direction, a candidate circle falls from the center of the fitted Gaussian in 
terms of standard deviations. For example, a snout path collision produced by an exploratory head movement 
during which a mouse rotated its body only 10 degrees would fall many standard deviations short of the average 
and thus be correctly excluded. Values of these features, as measured by F1 score against human consensus labels 

Fig. 1.   Data collection conditions and analysis pipeline. We collected videos of five wild-type and five (Cib2−/

−;Cib3−/−) dual knockout mice exploring a 30 cm-diameter cylindrical arena. Each of 6 combinations of light 
and distance conditions was repeated 4 times for each mouse, resulting in a total of 236 videos as 4 became 
corrupted. After behavior videos were recorded, all videos of one mutant mouse and one wild-type mouse 
were set aside for human behavioral labeling as a test set. For each of these held-out videos, three observers 
independently marked occurrences of circling behavior. These behavioral labels were compared to produce 
a set of consensus labels on which all observers agreed. A separate training set of human behavior labels was 
constructed by randomly selecting 24 mutant and 24 wild-type videos from among the remaining 188 videos. 
Additionally, positions of the snout and tailbase were manually labeled in 20 random frames from each of 
these 188 videos. Manually-labeled bodypart locations were used to train a computer vision model using 
DeepLabCut. This trained model was then used to track animals in the human-scored videos, and the resulting 
paths were analyzed by three candidate circling detection algorithms. After the parameters of these algorithms 
were optimized for F1 score on the training set, they were applied to the test set for evaluation.
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Fig. 2.   Human F1 scores. (A) Treating one independent observer as the gold standard for another reveals that humans show 
substantial variability in labeling circling behavior. In particular, although average F1 scores for each pair (AB, BC, CA) are similar 
(0.53, 0.52, 0.49), the distributions of scores across videos differ significantly between one pair and the other two (pair CA, p = 3.5E−2 
and 1.4E−4 versus pairs AB, BC respectively) while the other pair did not differ significantly (AB versus BC, p = 0.28). (B) Scoring 
of independent observers’ labels against another observer (left columns) or against consensus labels (agreement among 3 observers, 
right columns) produce similar results (p = 0.2), as does comparing between our two human data subsets (train versus test subset, 
p = 0.65 and 0.75). Pooled pairwise F1 scores averaged 0.51 (95% CI 0.47–0.55) in the training set and 0.53 (0.41–0.62) in the testing 
set. Scoring against consensus occurrences, in which all observers mark a complete circle within 0.1 s of one another, produced similar 
scores of 0.51 (0.44–0.57) in the training set and 0.53 (0.38–0.65). Each point in a column represents a single video. Labeler-video 
combinations for which F1 score is undefined (i.e., both scorer and ground truth marked no circling instances), are not displayed for 
either paired or consensus scoring but were included in bootstrapping for purposes of calculating confidence intervals.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20914  | https://doi.org/10.1038/s41598-024-71665-z

www.nature.com/scientificreports/

Fig. 3.   Method parameters and performance levels. (A) Timelapse of keypoint-labeled frames of a mouse engaged in 
circling behavior. (B) Parameter distributions and associated exponential and Gaussian fits from two sample videos. 
To accommodate the substantial variability observed across videos, we relied on a two-step process of Gaussian kernel 
estimation followed by fitting to a weighted sum of an exponential and normal distribution. This allowed the same 
technique to account for differences in e.g. average duration (left column, compare blue Gaussian fits) or greater 
numbers of small collisions likely to be false positives (right column, compare pink exponential fits). (C) Illustration 
of circle detection using each of the described methods. Duration-Only considers only time taken to complete the 
putative circle, Time-Angle additionally calculates the angle of the tail-to-snout vector for each frame and considers 
its total net change, and Box-Angle removes duration requirements and instead constraints the geometry of the circle 
based on the axes of a rectangle bounding the candidate circling instance. (D) Examples of false-positive detections 
using each method. There are clear features which indicate an instance should be filtered out for the Duration-Only 
(minimal head movement relative to the tail) and Time-Angle (oblong or missized snout path geometry) methods.
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in our training set, were optimized via an iterative Bayesian search over the range of ± 3 standard deviations from 
the mean of the Gaussian fit. Table 1 lists the parameters and final values for each method; parameter ranges 
were searched independently for each method.

Duration‑only method
To establish a lower bound on automatic behavioral detection performance, we first assessed a simple detection 
algorithm which considers only how long a candidate circling instance takes. The ‘Duration-Only’ method locates 
points at which the path of the mouse’s snout crosses over itself and excludes those which are either too short 
or too long (Fig. 3C, Row 1). Our parameter search produced an F1 score of approximately 0.21 in the training 
set. The same parameters applied to the manually-screened test set scored 0.10 (95% CI 0.02–0.17). As expected 
given its simplicity, this fell well below human performance and was not sufficient to filter out many false posi-
tives which appear obvious upon review. Specifically, it incorrectly labeled many cases of head-only exploratory 
movements as circling, examples of which are illustrated in Fig. 3D, Row 1. To filter these out more effectively 
and thereby improve behavioral detection, we next explored incorporating the labeled tailbase position.

Time‑angle method
For a mouse that is spinning rather than exploring with its snout alone, the angle of its snout relative to its tail 
should change noticeably and in a consistent direction. Accordingly, we next considered what we term the 
’Time-Angle’ method for excluding false-positive instances of circling. As illustrated in Fig. 3C, Row 2, this 
method calculates the angle of the mouse’s body in each frame using the vector from labeled tailbase position 
to labeled snout position. It then screens candidate circles using bounds on duration as well as minimum and 
maximum total rotation.

The optimized Time-Angle method reached an F1 score of approximately 0.38 in the training set and 0.22 
(95% CI 0.03–0.47) in the test set. Thus, incorporating the additional information of the tail’s position resulted 
in a substantial increase in behavioral detection performance which nevertheless remained well below human 
level. However, in examining erroneous circles detected by this method (Fig. 3D, Row 2), we identified many 
cases in which false positives were either clearly too small, too large, or distinctly oblong. To counteract this, we 
sought to incorporate additional geometric information about candidate circles.

Box‑angle method
To filter out cases based on the animal’s snout path, we implemented a final method which discards constraints 
on duration and instead contains an additional step in which a candidate circle is fitted to a minimum-area 
rectangle to provide additional geometric information (see Fig. 3C, Row 3). The resulting ’Box-Angle’ method 
constrains the side lengths of the resulting fitted rectangle. To avoid relying on specific information about the 
camera and the geometry of the recording apparatus, the minimum side length is specified relative to the median 
body length of the mouse as measured by tail-to-snout vector over the course of the video. Notably, during our 
parameter search we found that the inclusion of temporal information (duration constraints) actually resulted in 
a slightly worse training set performance (F1 score of 0.39 with vs 0.41 without). The best-performing parameters 
on the training set produced a test-set F1 score of 0.43 (95% CI 0.21–0.57). We observed that the false positives 
produced by this more sophisticated method do not suffer the same obvious flaws as those from the less complex 
techniques (Fig. 3D, Row 3),

Method performance comparison
As illustrated in Fig. 4, the straightforward Duration-Only method performs significantly lower than both human 
performance (p = 1.1E−11, two-tailed Wilcoxson signed rank test of automatic scores versus human scores) and 
the automatic Box-Angle methods (p = 2.8E−6, two-tailed Wilcoxson signed rank test between automatic scores 
from each method). The Time-Angle method, in turn, performs on par with the Duration-Only method (p = 0.2) 
and underperforms both independent human labeling (p = 4.7E−6) and the automatic Box-Angle methods 

Table 1.   Method parameters. Optimal values of features calculated from keypoint trajectories were selected 
for each circling identification algorithm via iterative Bayesian search based on resultant F1 scores.

Method Parameter Final value (SD from mean)

Duration-only
Min duration − 0.307

Max duration + 0.381

Time-angle

Min duration − 1.42

Max duration + 0.093

Min rotations − 0.524

Max rotations + 1.75

Box-angle

Min rotations − 1.07

Max rotations 0.238

Min minor axis − 1.23

Max major axis − 0.141
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(p = 1.9E−3). Finally, the extensive filtering of the Box-Angle method results in a performance distribution not 
significantly different from human observers (p = 0.51).

Differentiation between mutant and wild‑type mice
As the present work was aimed to develop a tool for detecting vestibular-mutant mice, the ultimate determinant 
of success is whether the presence of an automatically-detected circling instance positively identifies a video 
of a mutant mouse. The Box-Angle method developed above correctly reports zero circles for 20 of 24 test-set 
videos of wild-type mice, whereas at least one circle was scored in 16 of 24 mutant mouse videos. Thus, in our 
test dataset, the presence of at least one automatically-detected circle detects videos of (Cib2−/−;Cib3−/−) mutant 
mice with an F1 score of 0.73.

Impacts of dataset size
All the results reported thus far were produced using a DLC-trained convolutional neural network model, termed 
the "Full Dataset" model, which used 20 manually-labeled frames from each of 188 mouse behavior videos not 
used for human labeling. This model represents a substantial investment of experimenter effort, raising the 
question of whether sufficient behavioral detection performance could be achieved more easily. In particular, 
the publishers of DeepLabCut observed good labeling performance with substantially smaller datasets than 
what we use for our “Full Dataset” model4, but it was unclear a priori what labeling quality would be necessary 
for successful behavior detection.

In order to investigate the minimum amount of data and thus human labor needed to obtain good automatic 
behavioral detection performance, we trained several DLC models using different subsets of our manually-labeled 
frames, detailed in Table 2. Specifically, ten models were trained for each of several training dataset sizes—half, 
one-quarter, and one-eighth of the full dataset. Figure 5A displays the labeling performance (root-mean-squared 
error, in pixels) for all 10 networks within each dataset size category. For frames within a model’s training set, 
these network families reached errors of 9.29 (8.13–10.73), 9.84 (8.53–11.7), and 11.02 (9.11–12.91) pixels (mean 
& 95% CI). For unseen frames, these errors increased to 19.37 (16.92–22.28), 12.3 (10.51–14.4), and 14.34 
(12.66–15.98). Training data for each model was randomly selected to include all 20 labeled frames from the 
appropriate number of videos, i.e., data were shuffled by video rather than by frame. Subsequently, the ability of 
each model to accurately label the locations of the snout and tail-base on previously unseen videos was evaluated 
on a randomly-selected 50% (94 videos) of the full dataset which did not overlap with that network’s training 
data. Notably, while each family of networks produced larger errors on average than the full dataset model (7.82 
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Fig. 4.   Method performance comparison. After optimizing behavior detection algorithms on the human-
labeled training set, each was scored on the human consensus circling labels of the test set. Each column 
represents one algorithm, with one dot for each test set video with a defined score. Videos for which F1 score is 
undefined (i.e., the automated method and human consensus both marked no circling instances) were included 
in confidence interval calculations but not displayed as individual datapoints. The Duration-Only and Time-
Angle methods significantly underperformed independent human observers (mean and 95% CI 0.1 (0.02–0.17) 
and 0.22 (0.03–0.47), p = 1.1E−11 and 4.7E−6, respectively). Only the Box-Angle method reaches statistical 
parity (mean F1 0.43 (0.21–0.57), p = 0.51).
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pixels, dashed horizontal line), reduced dataset size did not monotonically worsen labeling performance on 
previously unseen videos.

To determine whether these differences in pixel-wise error impacted the ability of networks to successfully 
identify circling behavior, we ran F1-score-optimizing parameter searches over the human-scored training videos 
for each network using the Box-Angle method. As described above, the Full Dataset network achieved an F1 
score across the manually-screened videos of approximately 0.43. Model families trained on smaller datasets 
again showed a non-monotonic relationship between performance and dataset size, with half-, quarter- and 
eighth-sized datasets producing mean F1 scores across the test video dataset of 0.39, 0.41, and 0.36 respectively 
(Fig. 5B). These scores fell below the performance of the Full Dataset model (p = 0.03, 0.03, 0.02) and failed to 
match human performance (p = 1.7E−4, 1.4E−4, and 3.9E−5), suggesting that even small reductions in tracking 
quality were functionally significant at the behavioral analysis level.

Discussion
In the present study, we developed a technique to automatically detect circling behavior in videos of freely 
exploring mice using readily-available, consumer-grade hardware and open-source software. Importantly, this 
method is applicable to analyzing keypoint tracking captured by any method, whether open-source or propri-
etary, so long as it includes snout and tailbase positions. This makes it a convenient, quantitative tool to screen 
mice for circling behavior according to specific, objective criteria. More generally, our results suggest that similar 
procedures to develop consensus behavioral labels among human observers could be straightforwardly applied 
to enable effective, automatic detection of other behaviors of interest. The development of such quantitative 
tools with low barriers to entry is essential for the comparative analysis of behavior, as it expands the number of 
research groups able to produce directly inter-comparable data.

Limitations of prior approaches
Studies which report circling have varied widely in methods of detection and analysis, ranging from qualitatively 
reporting the presence or absence of circling5,23–25 to counting rotations per minute using manual or automated 
video tracking9,10,29,30. Manual methods place substantial demands on human time; in our experience, marking 
circling behavior in a given video took on the order of four to five times as long as the video itself on average, 
owing to the need to e.g. play videos slowly to avoid missing instances, pause videos to make notes, and replay 
sections of videos to ensure the timing of instances were precisely noted. Indeed, both the low overall F1 scores 
and the inter-video variability in those scores observed in comparisons among human observers (Fig. 2) sug-
gest that an automated detection system for circling behavior might be advantageous in that, in addition to not 
becoming distracted or fatigued1–3, it would give a consistent output for a given video.

Software to track rodents in videos is commercially available, but such products face issues of both price 
and opacity; as closed-source software, they limit the ability of researchers to examine how specific results were 
generated and to customize or otherwise modify those underlying methods34. In the present study, we chose 
to use the open-source markerless feature-tracking toolbox DeepLabCut to track the positions of keypoints 
on animals. However, the analysis applied to this positional information is agnostic to the tracking method 
used (see Discussion: “Availability and use”). Existing automated methods using video analysis face limitations 
in quantifying circling behavior due to false positives arising from grooming or exploratory turns. Our work 
specifically addresses this issue by incorporating filters for excluding false positives using carefully tuned geo-
metric parameters—by tracking only two key points on the mouse and applying straightforward algorithms, 
we achieved behavioral labeling performance (F1 score 0.43) statistically similar to that of independent human 
coders (0.53, p = 0.51, Fig. 5B).

Availability and use
Our Full-Data model, the Python script to detect circles from keypoint positions, and an associated Anaconda 
environment file can be found at our GitHub (https://​github.​com/​Culle​nLab/​Circl​ingDe​tecti​on) along with a 
step-by-step guide to installing and using the system. Use requires only basic familiarity with the command line 

Table 2.   Keypoint labeling performance among models. Subsets of our manually-labeled frames were used 
to train different neural network models using DeepLabCut. All models were initialized using the pretrained 
ResNet50 model available through DLC and trained for up to 100,000 iterations at a learning rate of 0.001. 
Performance was assessed using root-mean-squared error, in pixels, between model-assigned and manually-
labeled snout and tailbase positions. *p < 0.05,  ***p < 0.001.

Dataset Full Half Quarter Eighth

# Videos train 188 94 47 24

# Videos test N/A 94 94 94

# Networks 1 10 10 10

Training RMSE pixels (mean (95%CI)) 7.82 9.29 (8.13–10.73) 9.84 (8.53–11.7) 11.02 (9.11–12.91)

Testing RMSE pixels (mean (95%CI)) N/A 19.37 (16.92–22.28) 12.3 (10.51–14.4) 14.34 (12.66–15.98)

F1 score (mean (95%CI)) 0.43 (0.21–0.57) 0.39 (0.17–0.54) 0.41 (0.19–0.56) 0.36 (0.14–0.52)

P-value vs full, human N/A, 0.51 *0.03, ***1.7E−4 *0.03, ***1.4E−4 *0.02, ***3.9E−5

https://github.com/CullenLab/CirclingDetection
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or with integrated development environments. To use our code, we recommend installing Anaconda (see anaco​
nda.​com) and using it to create a Python environment from the ‘circlingmouse.yaml’ file included in the 
GitHub Repository (i.e., using ‘conda env create -n circlingmouse -f circlingmouse.
yaml’). Tracking data in the form of a comma-separated-value (CSV) file, whether from DLC or other sources, 
should be placed within the downloaded folder. Although we chose to develop our methodology using DLC, 
the detection algorithm can in principle be employed using any technique to track the snout and tail base. Those 
utilizing other tracking methods should note that while the ‘Circling_BoxAngle.py’ script assumes a 
particular configuration of columns in the files to be analyzed (described further in the repository documenta-
tion), CSVs produced by other tracking methods can be straightforwardly modified to fit this scheme. The code 
can either be run from the command line (‘conda activate circlingmouse’, then ‘python Cir-
cling_BoxAngle.py $Your_Tracking_CSV_Here$.csv’ from within the downloaded Repository), 
or run via one of the development environments Anaconda offers.

In our analysis, we found that human-level performance required accurate keypoint tracking and extensive 
filtering of false positives. As a result, we encourage the use of our pretrained Full Dataset model by future experi-
menters wherever possible to make best use of human time and effort. Furthermore, regardless of the tracking 
method used, we recommend applying the included Box-Angle method code for experiments focused on circling, 
as it incorporates the most information about the animal’s movements and was the only technique to reach par-
ity with human observers. As the analysis is applied directly to the labeled coordinates of the snout and tailbase 
keypoints, the Box-Angle method will be usable alongside any high-quality tracking method. As noted below, 
however (see Discussion: “Directions for future work”), our tools may not be appropriate for e.g. mice of varied 
colors or in complex environments, nor for behaviors whose detection requires tracking additional keypoints.

Conclusions and implications
Here, we present an open-source tool which identifies circling, a specific, abnormal locomotor behavior which 
distinguishes between wild-type mice and many mouse models of interest to biological researchers, in this case 
a strain of vestibular mutant mice. We first revealed the substantial variability exhibited by human observers in 
manually marking this behavior, then developed a tool which uses simple, directly interpretable parameters to 
achieve statistical parity with independent human observers when scored against human consensus.

Emerging video-based technologies that facilitate the tracking of key body features are well-suited to the 
development of accessible methods for objectively quantifying behavior, including the effects of vestibular loss 
on those behaviors. Such studies are clinically relevant in light of aging populations, as vestibular dysfunction 
substantially increases fall risk and causes symptoms including dizziness, vertigo, nausea, and blurred vision. In 
adults over 40, its prevalence has been estimated as ranging from more than one in twenty35 (using vestibular-
specific clinical measures) to more than one in three people over36 (using broader balance-related symptoms).

Mouse models are advantageous for studies of treatments and causes of vestibular impairment, due in part 
to the ability of researchers to genetically engineer new strains using increasingly sophisticated tools37,38. Recent 
developments in mouse genetic engineering, involving the creation of transgenic and knockout mutant mice, 
have provided a novel opportunity to study the relationship between genes and behavior3. For example, many 
mutant mice strains that have been characterized with an underlying impairment of peripheral vestibular func-
tion display a circling behavioral phenotype. While there exist a number of non-invasive methods to detect 
the existence of vestibular dysfunction in mice, such as the rota-rod and balance beam tests6, the variety of 
vestibular-loss circling mouse models suggests screening for circling may serve as a convenient screening tool 
for identifying novel models of vestibular dysfunction. In the present study, we specifically assessed the circling 
behavior (Cib2−/−;Cib3−/−) dual knockout mice31–33. CIB2 is found in the stereocilia tips of the receptor cells 
within the vestibular sensory organs39 (i.e., vestibular hair cells), suggesting the circling behavior observed in 
these mice results specifically from deficits in peripheral mechanotransduction. Notably, the strain studied in the 
present work is just one example of a large number of strains with mutations homologous to subtypes of Usher 
syndrome40, including deaf circler26, waltzer29, Ames waltzer41, and Jackson shaker42 mice. In the present study, 
comparing those parameters that are shared across the developed methods (i.e., duration and rotation, Table 1) 
reveals that the parameters which resulted in optimal performance varied depending on what additional informa-
tion was included; we speculate that this variability arises from the variability of the underlying behavior. Notably, 
the similar performance observed when applying the optimized Box-Angle method to novel videos (0.41 vs 0.43) 
suggests we have successfully built a tool which was robust to this variability. Further work automatically and 
objectively quantifying circling behavior may reveal otherwise undetectable differences in circling parameters 
(e.g. differences in frequency, rotational velocity, and geometry) between model strains.

An important advantage of video-based approaches to behavioral and especially vestibular neuroscience is 
that they are non-invasive. This stands in contrast with the emerging use of head-mounted sensors to assess 
motor impairments in mouse models (see for example5,6), which typically require an experimental surgery to 
securely fix the sensor to the mouse’s skull. We speculate that as the spatio-temporal resolution of readily avail-
able, consumer-grade hardware continues to improve, the tradeoff in resolution between a completely noninva-
sive recording technique (video analysis) and a more invasive technique in which inertial sensors are mounted 
surgically will become less critical.

More broadly, tools for detecting and quantifying behavior which do not rely on specialized experience with 
software engineering will allow a wider array of research groups to directly compare analyses of neurodevelop-
mental differences and intervention effects. The use of shared automatic behavioral analysis tools would increase 
both the speed and consistency of behavioral labeling, especially when analyzing long or numerous videos. For 
example, the technique presented in this paper could aid in screening novel mutants for vestibular dysfunction. 

https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
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Common behavior definitions may also provide inter-comparability among studies within and across research 
groups as well as improving the reproducibility of those studies.

As noted above, the development of this work was motivated in part by substantial variability seen among 
human observers when labeling behavior independently. The success of the methodology developed here argues 
for the broader use of tuning behavioral detection algorithms based on consensus among multiple human observ-
ers. In particular, by demonstrating the effectiveness of an automated detection system for circling behavior 
tuned to match group consensus, our results provide a convenient, quantitative screening method for mouse 
models of vestibular dysfunction, which we hope will serve as an important step toward standardized, automatic 
measurement of motor dysfunction in mouse models that provide more reliable measurements across studies 
and laboratories.
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Directions for future work
The current study focuses on creating as simple a method as possible for detecting a specific behavior. Impor-
tantly, however, this work is limited to first-order features of the tracked keypoint paths, i.e. it does not incor-
porate information regarding velocity or acceleration which human observers have access to when watching 
behavior videos. Further refinement of automated methods may take advantage of these or other higher-order 
features. Additionally, it seems clear that incorporating a larger number of keypoint labels will be critical for 
richer examination of rodent posture and gait43, and has previously been incorporated into other analyses of 
circling mice specifically44. As our Full Dataset model was trained for only the two keypoints of interest to us, 
future researchers seeking to apply our findings to more complex behaviors will likely be unable to employ the 
specific computer vision model used here. Our model is further limited in that its training data consists of black-
furred mice on white backgrounds (see example frames, Fig. 3A); we expect this will result in degraded tracking 
of animals of varied colors or on low-contrast backgrounds.

It is noteworthy that the concepts underlying our approach can be readily applied to other behaviors of interest 
to researchers. Specifically, by first creating a set of occurrence times coded independently and then constructing 
a set of consensus occurrence times, we were able to directly quantify human-level performance. In principle, 
this enables working with a wide range of behaviors which may be difficult to define explicitly ahead of time but 
which we ’know when we see them’. Indeed, the concept is not limited in application to the analysis of visual 
information. Rather, in any situation where human observation is currently required to disentangle ambiguity 
in behavioral data, it is possible to optimize automated analysis to match agreement among multiple independ-
ent observers as well as possible to avoid incorporating biases or quirks of any one observer. This is equally true 
for the identification of freezing behavior45, which must be distinguished from simply remaining still just as 
circling must be distinguished from normal exploration; analysis of social interactions among animals46, the 
dimensionality of which will rise exponentially with the number of individuals being considered; or attempting 
to detect a particular category of vocalization47,48, which may occur in noisy environments or be ambiguous 
as to whether a call represents e.g. a warning of approaching predators versus a warning to deter conspecific 
competitors. Although differences will arise in the choice of features being used as input to automated detec-
tion methods, which will depend on the behavior and modality of interest (e.g. rotational velocity for circling 
detection versus linear velocity for freezing detection), in all cases the process of generating consensus from 
independently-marked behavior timing will be similar.

Methods
Animal care and housing
Five adult wild-type (C57BL/6) mice (Jackson Laboratories) and five adult mutant (Cib2−/−;Cib3−/−) mice were 
used in this study. Generation of mutant mice is described in a separate paper33. Animals were group-housed 
with their littermates on a 12:12 h light: dark cycle at 20 °C with ad libitum access to food and water. All animal 
procedures complied with the ARRIVE guidelines and were carried out in accordance with National Institutes 
of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978) and 
were approved by the Institutional Animal Care and Use Committees (IACUCs) at University of Maryland 
(protocol #0420002).

Data generation
We recorded videos of 5 wild-type mice and 5 (Cib2−/−;Cib3−/−) dual knockout circling mice during single-animal 
exploration of a cylindrical arena 30 cm in diameter, similar to ones used in past studies8,9,15. For each mouse, we 
recorded four 2-min videos at 60 fps in each of six recording conditions—low (~ 4 lx), moderate (~ 375 lx), or 
bright lighting (~ 875 lx), each with the camera either near to (60 cm) or far from (100 cm) the animal. These were 
selected to span a broad range of potential experimental setups and to provide varied data for neural network 
training; conditions are illustrated in Fig. 1. Unfortunately, during the course of the study one set of video data 
(four videos of a mutant mouse in low-light, near-camera conditions) became corrupted; as this mouse was not 

Fig. 5.   Dataset size performance comparison. (A) Labeling performance (error, in pixels) for each of 10 trained 
networks on datasets of progressively smaller sizes. All dataset sizes resulted in greater labeling error than the 
Full Dataset model (dashed horizontal line), particularly for frames not seen during training (test frames). 
Notably, this trend was not monotonic—the set of quarter-dataset models performed better on test frames, on 
average, than the set of half-dataset models. Root-mean-squared errors on training set frames were (mean and 
95% CI) 9.29 (8.13–10.73), 9.84 (8.53–11.7), and 11.02 (9.11–12.91) pixels respectively. For unseen frames, 
these errors increased to 19.37 (16.92–22.28), 12.3 (10.51–14.4), and 14.34 (12.66–15.98). Dashed horizontal 
line represents Full Dataset model training frame error (7.82 pixels). (B) To determine whether these changes 
in labeling quality impacted, we applied the optimized Box-Angle method to the keypoint tracking produced 
by each network at each dataset size. Within a dataset, the true-positive, false-positive, and false-negative scores 
for each video were summed to calculate a representative F1 score, plotted here as individual dots in the half-, 
quarter-, and eighth-sized datasets. The resulting distributions are compared to scores from the Full Dataset 
network (left column) and to independent human scores (right). As elsewhere, video-net combinations for 
which F1 score are undefined are included in confidence interval calculations but not displayed as individual 
datapoints. These smaller datasets underperformed the Full Dataset network (p = 0.03, 0.03, 0.02) as well as 
human labels (p = 1.7E−4, 1.4E−4, 3.9E−5), indicating that even small reductions in keypoint tracking quality 
can impact behavioral detection. *p < 0.05,  ***p < 0.001.
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the one used for human behavioral labeling, we believe the impacts on the study’s results were negligible. Our 
total set of 236 videos thus consisted of 116 videos of wild-type mice and 120 videos of mutant mice.

Gold standard development
Assessing the effectiveness of our tool required a ground truth against which we could compare the automatic 
detection of circling behavior. In order to compare potential automatic methods against the current gold standard 
of human behavior labeling, we set aside all videos of one randomly selected mutant and wild-type mouse for 
manual screening (4 videos in each of 6 conditions; 24 videos each). Additionally, within the remaining videos, 
24 of mutant mice and 24 of wild-type mice were randomly selected for manual screening. Three observers 
independently marked times at which circling behavior occurred. Observers were instructed to mark complete 
rotations during bouts of circling behavior but not during normal exploratory behavior shared by wild-type mice 
(e.g., turning around after reaching the edge of the arena). Videos were not labeled with information regarding 
mouse genotype. These behavior labels were compared to produce a set of consensus occurrences.

Consensus behavior labels were established by comparing these independently-marked times. To accom-
modate variations in the precise timing of marked circling occurrences, times within 6 frames (0.1 s) of one 
another were counted as the same instance, a timeframe chosen to cover 95% of the observed variation between 
independent observers. If all three observers agreed by this quantitative definition, the average of these matched 
times was taken as a consensus instance. Independent labels were not subject to modification during this process. 
Subsequently, circling instances detected by either human observers or automatic methods were counted as true 
positives if they fell within 0.1 s of a consensus-labeled occurrence.

Algorithm development and parameter search
We compared three algorithms for detecting circling using labeled locations of two keypoints on the body of 
freely exploring mice. These methods first search the path of the mouse’s snout for cases where it crosses over 
itself as candidates for instances of circling, then apply thresholds to features of the mouse’s path to filter out false 
positives. The ’Duration-Only’ method uses only thresholds on minimum and maximum duration. The ’Time-
Angle’ method additionally excludes candidate circles based on minimum and maximum angular change of the 
vector from the tailbase to nose. Finally, the ’Box-Angle’ method removes the duration constraints and instead 
considers the tail-nose vector rotation and the lengths of the major and minor axes of a minimum-bounding 
rectangle fit to the snout path. As described in Table 1, we thus needed to optimize either 2 or 4 parameters 
depending on the method being considered. Listed parameter ranges were explored independently for each 
method rather than the common parameters being frozen as new parameters were added.

The statistics of animal movement can be highly variable. For example, Fig. 3B illustrates the different dis-
tributions of path collision parameters observed in two videos in our training dataset. To ensure robustness 
against behavioral variability between animals or of the same animal at different times, we selected a method 
for excluding false positives based on the distribution of duration, total rotation, and size within a given video. 
Specifically, for a given method applied to a specific video n, Gaussian kernel density estimation k for the 
parameter(s) θ of interest is performed on the set of all M collisions detected in that video’s tracking data across 
possible parameter values x.

A combined probability density q consisting of a weighted sum of an exponential with parameter λ and a 
Gaussian probability density function with mean μ and standard deviation σ, with weights v and w, respectively, 
is fitted to this density estimate via least-squared-error.

Using the Gaussian component of the fitted distribution, thresholds for rejecting a collision as a circling 
candidate are then specified in terms of standard deviations above or below the mean.

Lacking an explicit representation of the derivative of F1 score with respect to these threshold parameters, 
we instead employed constrained Bayesian optimization to identify well-performing parameter combinations49. 
This process first constructs an estimate of the function to be optimized (in our case, F1 score on the training set) 
based on random sampling of the parameter space, then iteratively explores the location expected the next most 
exploration-worthy positions in the parameter space and the posterior distributions to find a parameter combina-
tion close to the optimal combination. For each parameter combination, we first explore the parameter space via 
2000 random samples and then apply Bayesian optimization with 1000 iterations to search for the best parameter 
combination. Thresholds were constrained to within ± 3 standard deviations. The parameter combination values 
with the highest train F1 score are reported, evaluated on the test set, and compared with human performance.
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Neural network training
We chose to use DLC, an open-source tool for training deep convolutional neural networks to recognize user-
labeled image features, to track the locations of mouse-body keypoints due to its accessibility, as it can be straight-
forwardly used by researchers with little machine learning experience with consumer-grade computing hardware.

As described above, from the 240 free behavior videos originally recorded, 48 were held out as a test set. Four 
videos unfortunately became corrupted and were not used in the study. From each of the 188 remaining videos 
not used in manual behavior screening, we labeled 20 random frames with the positions of the mouse’s snout 
and the base of its tail. We utilized data augmentation in the form of the ’imgaug’ dataloader included in DLC, 
which applies perturbations during network training such as cropping, blurring, and rotating training images. 
We refer to this as the "Full Dataset’’ model, in contrast to models trained on subsets of this data.

To investigate the amount of data necessary to reach a plateau in performance, we used different subsets of 
our 188-video dataset to train several different DLC models. We compared networks trained with one-half, one-
quarter, and one-eighth of the full training dataset (97, 48, and 24 videos, respectively). For each such network, 
the appropriate number of videos were randomly assigned to a training dataset, with 97 of the remaining videos 
(50% of the training set) then assigned at random to assess the network’s ability to label frames from unseen 
videos. (Table 2) Each model was initialized using a 50-layer pretrained network model (ImageNet-pretrained 
Resnet50) and trained for 100,000 iterations at a learning rate of 0.001. After training, each DLC network was run 
on human-scored videos to produce position traces to be analyzed using the Box-Angle method described above.

Statistical analyses
To balance the need to avoid both false positive and false negative errors, we used F1 score to assess three methods 
of detecting circling behavior in labeled paths, calculated as follows:

Notably, in cases where all three of (True Positives, False Positives, False Negatives) are equal to zero, all these 
metrics F1 score is undefined. When this occurs, the specific set of scores in question is excluded from p-value 
but not confidence interval calculations. This is the case on many of the manually-screened behavior videos, 
in which all three of the human observers marked no instances of circling and well-tuned automatic methods 
do not score any false positives. P-values for differences between F1 score distributions were calculated using a 
two-tailed Wilcoxson signed rank tests.

As we could not assume normality of performance distributions a priori, confidence intervals were calculated 
via bootstrap50, i.e., creating a large number of pseudo-datasets of the same size as the original by repeatedly 
sampling with replacement from the video scores generated by a given method or human labeler. Specifically, 
this process involves repeatedly drawing N samples with replacement from among the N scores generated by a 
particular method, individual, or family of DLC models. The F1 score for a particular draw is then calculated 
from the sum of true positives, false positives, and false negatives for that draw. In all cases where a confidence 
interval is reported, we sampled one million such pseudo-datasets. Reported intervals are calculated as the 2.5th 
and 97.5th percentiles of the resulting population of F1 scores.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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